Research Article
BibTex RIS Cite

Sıçanlarda Oluşturulan Prenatal Stres Modelinde Parkinson Hastalığı Patogenezinde Rol Oynayan Bazi Proteinlerin Gen Ekspresyon Düzeylerinin İncelenmesi

Year 2024, Issue: Special Issue / International Multidisciplinary Symposium on Drug Research and Development, DRD-2023, 34 - 45, 01.07.2024
https://doi.org/10.52794/hujpharm.1393164

Abstract

Bu çalışma, prenatal stresin (PS) Parkinson hastalığının (PH) gelecekteki başlangıcını nasıl etkileyebileceğini daha iyi anlamak amacıyla gerçekleştirilmiştir. Çalışma için sıçanlarda deksametazon ile indüklenen bir PS modeli oluşturulmuştur. PH patogenezinde rol oynayan tirozin hidroksilaz (TH), α-sinüklein (SNCA), dopamin taşıyıcı (SLC6A3) ve parkin (PRKN) proteinlerinin ekspresyon seviyelerindeki değişiklikler, PS'ye maruz kalan erkek sıçanların serebral korteksinde gerçek zamanlı PCR ile gösterilmiştir. Hamileliklerinin 14. Gününden 21. Gününe kadar, gebe sıçanlara günlük olarak deksametazon veya salin (100 μg/kg ve 1 ml/kg) enjekte edilmiştir. Doğumdan 3 ay sonra, erkek sıçanlara dekapitasyon uygulandı (n=5), serebral korteks diseksiyonu yapıldı. Total RNA kortekslerden izole edildi ve cDNA sentezi için kullanıldı. Gen ekspresyon analizleri ∆∆CT yöntemine göre yapıldı. Gruplar arasındaki istatistiksel farklılıklar Mann-Whitney testi ile analiz edildi. İstatistikler p<0.05 düzeyinde anlamlı kabul edildi. Gebelik boyunca deksametazon maruziyeti TH ve SLC6A3 mRNA düzeylerini anlamlı şekilde arttırmıştır. Deney grupları arasında PRKN ve SNCA mRNA seviyelerinde anlamlı bir fark bulunmamıştır. Sonuç olarak, PS'ye maruz kalan yavrular, TH ve SLC6A3'ün kortikal mRNA seviyelerinde meydana gelen değişimlerden dolayı yetişkinlikte PH'ye daha duyarlı olabilir.

Anahtar Kelimeler: Prenatal stres, Parkinson Hastalığı, Tirozin hidroksilaz, Dopamin taşıyıcı

References

  • 1. Kurul E, Mecdi Kaydırak M. Genetıc Counselıng In The Prenatal And Postnatal Perıod: The Role And Responsıbılıty Of The Nurse. J Health Pro Res. 2022;4(3): 193-201. doi: 10.57224/jhpr.1092043.
  • 2. Antonelli MC, Pallarés ME, Ceccatelli S, Spulber S. Longterm consequences of prenatal stress and neurotoxicants exposure on neurodevelopment. Prog Neurobiol. 2017 Aug; 155:21-35. doi: 10.1016/j.pneurobio.2016.05.005
  • 3. AIS. What is Stress? 2017. [cited July 2023]. Available from: https://www.stress.org/what-is-stress.
  • 4. Özgören O. Prenatal stres oluşturulmuş sıçanlarda şizofreni ile ilişkili mekanizmaların gen ekspresyonu açısından incelenmesi [dissertation]. Izmir: Ege University; 2021.
  • 5. Du X, Pang TY. Is Dysregulation of the HPA-Axis a Core Pathophysiology Mediating Co-Morbid Depression in Neurodegenerative Diseases? Front Psychiatry. 2015 Mar 9; 6:32. doi: 10.3389/fpsyt.2015.00032.
  • 6. Glover V. Prenatal stress and its effects on the fetus and the child: possible underlying biological mechanisms. Adv Neurobiol. 2015; 10:269-83. doi: 10.1007/978-1-4939-1372-5_13.
  • 7. Jankovic J, Tan EK. Parkinson’s Disease: etiopathogenesis and treatment. J Neurol Neurosurg Psychiatry. 2020 Aug;91(8):795-808. doi: 10.1136/jnnp-2019-322338.
  • 8. Ye H, Robak LA, Yu M, Cykowski M, Shulman JM. Genetics and Pathogenesis of Parkinson’s Syndrome. Annu Rev Pathol. 2023 Jan 24;18:95-121. doi: 10.1146/annurev-pathmechdis- 031521-034145.
  • 9. Balestrino R, Schapira AHV. Parkinson disease. Eur J Neurol. 2020 Jan;27(1):27-42. doi: 10.1111/ene.14108.
  • 10. Lill CM. Genetics of Parkinson’s disease. Mol Cell Probes. 2016 Dec;30(6):386-396. doi: 10.1016/j.mcp.2016.11.001.
  • 11. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science. 1997 Jun 27;276(5321):2045-7. doi: 10.1126/science.276.5321.2045.
  • 12. Klein C, Westenberger A. Genetics of Parkinson’s disease. Cold Spring Harb Perspect Med. 2012 Jan;2(1):a008888. doi: 10.1101/cshperspect.a0088.
  • 13. Eriksen JL, Wszolek Z, Petrucelli L. Molecular pathogenesis of Parkinson disease. Arch Neurol. 2005 Mar;62(3):353-7. doi: 10.1001/archneur.62.3.353.
  • 14. Shulman JM, De Jager PL, Feany MB. Parkinson’s disease: genetics and pathogenesis. Annu Rev Pathol. 2011;6:193-222. doi: 10.1146/annurev-pathol-011110-130242.
  • 15. Vila M, Przedborski S. Genetic clues to the pathogenesis of Parkinson’s disease. Nat Med. 2004 Jul;10 Suppl:S58-62. doi: 10.1038/nm1068.
  • 16. Gómez-Benito M, Granado N, García-Sanz P, Michel A, Dumoulin M, Moratalla R. Modeling Parkinson’s Disease With the Alpha-Synuclein Protein. Front Pharmacol. 2020 Apr 23;11:356. doi: 10.3389/fphar.2020.00356.
  • 17. Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, Schrag AE, Lang AE. Parkinson disease. Nat Rev Dis Primers. 2017 Mar 23;3:17013. doi: 10.1038/nrdp.2017.13.
  • 18. Day JO, Mullin S. The Genetics of Parkinson’s Disease and Implications for Clinical Practice. Genes (Basel). 2021 Jun 30;12(7):1006. doi: 10.3390/genes12071006.
  • 19. Oztan G. Parkinson hastalığında genetik mekanizmalar ve gen tedavisi yaklaşımları. In: Dalkılıç M, editor. Scientific Developments for Health and Life Sciences. Ankara: Gece Kitaplığı; 2020. p. 434.
  • 20. Seirafi M, Kozlov G, Gehring K. Parkin structure and function. FEBS J. 2015 Jun;282(11):2076-88. doi: 10.1111/febs.13249.
  • 21. Zhai D, Li S, Zhao Y, Lin Z. SLC6A3 is a risk factor for Parkinson’s Disease: a meta-analysis of sixteen years’ studies. Neurosci Lett. 2014 Apr 3;564:99-104. doi: 10.1016/j.neulet. 2013.10.060.
  • 22. Bu M, Farrer MJ, Khoshbouei H. Dynamic control of the dopamine transporter in neurotransmission and homeostasis. NPJ Parkinsons Dis. 2021 Mar 5;7(1):22. doi: 10.1038/ s41531-021-00161-2.
  • 23. Tabrez S, Jabir NR, Shakil S, Greig NH, Alam Q, Abuzenadah AM, Damanhouri GA, Kamal MA. A synopsis on the role of tyrosine hydroxylase in Parkinson’s Disease. CNS Neurol Disord Drug Targets. 2012 Jun 1;11(4):395-409. doi: 10.2174/187152712800792785.
  • 24. Johnson ME, Salvatore MF, Maiolo SA, Bobrovskaya L. Tyrosine hydroxylase as a sentinel for central and peripheral tissue responses in Parkinson’s progression: Evidence from clinical studies and neurotoxin models. Prog Neurobiol. 2018 Jun- Aug;165-167:1-25. doi: 10.1016/j.pneurobio.2018.01.002.
  • 25. Hougaard KS, Andersen MB, Kjaer SL, Hansen AM, Werge T, Lund SP. Prenatal stress may increase vulnerability to life events: comparison with the effects of prenatal dexamethasone. Dev Brain Res. 2005; 159(1):55-63. doi: 10.1016/j.devbrainres. 2005.06.014.
  • 26. Welberg LAM, Seckl JR. Prenatal Stress, Glucocorticoids and the Programming of the Brain. J Neuroendocrinol. 2001; 13(2):113-128. doi: 10.1046/j.1365-2826.2001.00601.x.
  • 27. Kjaer SL, Hougaard KS, Tasker RA, MacDonald DS, Rosenberg R, Elfving B, Wegener G. Influence of diurnal phase on startle response in adult rats exposed to dexamethasone in utero. Physiol Behav. 2011; 102(5):444-452. doi: 10.1016/j. physbeh.2010.12.015.
  • 28. Maccari S, Morley-Fletcher S. Effects of prenatal restraint stress on the hypothalamus-pituitary-adrenal axis and related behavioural and neurobiological alterations. Psychoneuroendocrinology. 2007 Aug;32 Suppl 1:S10-5. doi: 10.1016/j. psyneuen.2007.06.005.
  • 29. Baier CJ, Pallarés ME, Adrover E, Monteleone MC, Brocco MA, Barrantes FJ, Antonelli MC. Prenatal restraint stress decreases the expression of alpha-7 nicotinic receptor in the brain of adult rat offspring. Stress. 2015;18(4):435-45. doi: 10.3109/10253890.2015.1022148.
  • 30. Bikandi J, San Millán R, Rementeria A, Garaizar J. In silico analysis of complete bacterial genomes: PCR, AFLP-PCR and endonuclease restriction. Bioinformatics. 2004 Mar 22;20(5):798-9. doi: 10.1093/bioinformatics/btg491.
  • 31. Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 2012 Jun 18;13:134. doi: 10.1186/1471-2105-13-134.
  • 32. Raeymaekers, L. Basic principles of quantitative PCR. Mol Biotechnol. 2000; 15: 115–122. https://doi.org/10.1385/ MB:15:2:115
  • 33. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001 Dec;25(4):402-8. doi: 10.1006/meth.2001.1262.
  • 34. Nagatsu T, Nagatsu I. Tyrosine hydroxylase (TH), its cofactor tetrahydrobiopterin (BH4), other catecholamine-related enzymes, and their human genes in relation to the drug and gene therapies of Parkinson’s Disease (PD): historical overview and future prospects. J Neural Transm (Vienna). 2016 Nov;123(11):1255-1278. doi: 10.1007/s00702-016-1596-4.
  • 35. Nagatsu T, Sawada M. Biochemistry of postmortem brains in Parkinson’s Disease: historical overview and future prospects. J Neural Transm Suppl. 2007;(72):113-20. doi: 10.1007/978- 3-211-73574-9_14.
  • 36. Converse AK, Moore CF, Moirano JM, Ahlers EO, Larson JA, Engle JW, Barnhart TE, Murali D, Christian BT, DeJesus OT, Holden JE, Nickles RJ, Schneider ML. Prenatal stress induces increased striatal dopamine transporter binding in adult nonhuman primates. Biol Psychiatry. 2013 Oct 1;74(7):502-10. doi: 10.1016/j.biopsych.2013.04.023.

Investigation of Gene Expression Levels of Some Proteins Related to the Pathogenesis of Parkinson's Disease in Rats Exposed to Prenatal Stress

Year 2024, Issue: Special Issue / International Multidisciplinary Symposium on Drug Research and Development, DRD-2023, 34 - 45, 01.07.2024
https://doi.org/10.52794/hujpharm.1393164

Abstract

IThis study was carried out in order to better understand how prenatal stress (PS)
may affect the future onset of Parkinson’s disease (PD). A dexamethasone-induced
PS model was established in rats for the study. Changes in the expression
levels of tyrosine hydroxylase (TH), α-synuclein (SNCA), dopamine transporter
(SLC6A3), and parkin (PRKN) proteins, which play role in PD pathogenesis,
were demonstrated by real-time PCR in the cerebral cortex of male rats exposed
to PS. From GD 14 to 21, pregnant rats were injected daily with Dex or saline
(100 μg/kg and 1 ml/kg). 3 months after birth, male rats underwent decapitation
(n=5), cerebral cortex dissection was performed. Total RNA was isolated from
cortexes and used for cDNA synthesis. Gene expression analyzes were performed
according to the ΔΔCT method. The statistical differences between groups were
analyzed by the Mann-Whitney test. Statistics were deemed significant at a level
of 0.05. Dex exposure throughout pregnancy significantly increased mRNA levels
of TH and SLC6A3. No significant differences were found in the mRNA levels
of PRKN and SNCA between experimental groups. In conclusion, offspring
exposed to PS may be more susceptible to PD in adulthood through changes in
the cortical mRNA levels of TH and SLC6A3.

Ethical Statement

The Ege University Ethics Committee on Animal Experiments approved this study (05/24/2017; Reference No. 2017-023).

Supporting Institution

TÜBİTAK

References

  • 1. Kurul E, Mecdi Kaydırak M. Genetıc Counselıng In The Prenatal And Postnatal Perıod: The Role And Responsıbılıty Of The Nurse. J Health Pro Res. 2022;4(3): 193-201. doi: 10.57224/jhpr.1092043.
  • 2. Antonelli MC, Pallarés ME, Ceccatelli S, Spulber S. Longterm consequences of prenatal stress and neurotoxicants exposure on neurodevelopment. Prog Neurobiol. 2017 Aug; 155:21-35. doi: 10.1016/j.pneurobio.2016.05.005
  • 3. AIS. What is Stress? 2017. [cited July 2023]. Available from: https://www.stress.org/what-is-stress.
  • 4. Özgören O. Prenatal stres oluşturulmuş sıçanlarda şizofreni ile ilişkili mekanizmaların gen ekspresyonu açısından incelenmesi [dissertation]. Izmir: Ege University; 2021.
  • 5. Du X, Pang TY. Is Dysregulation of the HPA-Axis a Core Pathophysiology Mediating Co-Morbid Depression in Neurodegenerative Diseases? Front Psychiatry. 2015 Mar 9; 6:32. doi: 10.3389/fpsyt.2015.00032.
  • 6. Glover V. Prenatal stress and its effects on the fetus and the child: possible underlying biological mechanisms. Adv Neurobiol. 2015; 10:269-83. doi: 10.1007/978-1-4939-1372-5_13.
  • 7. Jankovic J, Tan EK. Parkinson’s Disease: etiopathogenesis and treatment. J Neurol Neurosurg Psychiatry. 2020 Aug;91(8):795-808. doi: 10.1136/jnnp-2019-322338.
  • 8. Ye H, Robak LA, Yu M, Cykowski M, Shulman JM. Genetics and Pathogenesis of Parkinson’s Syndrome. Annu Rev Pathol. 2023 Jan 24;18:95-121. doi: 10.1146/annurev-pathmechdis- 031521-034145.
  • 9. Balestrino R, Schapira AHV. Parkinson disease. Eur J Neurol. 2020 Jan;27(1):27-42. doi: 10.1111/ene.14108.
  • 10. Lill CM. Genetics of Parkinson’s disease. Mol Cell Probes. 2016 Dec;30(6):386-396. doi: 10.1016/j.mcp.2016.11.001.
  • 11. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science. 1997 Jun 27;276(5321):2045-7. doi: 10.1126/science.276.5321.2045.
  • 12. Klein C, Westenberger A. Genetics of Parkinson’s disease. Cold Spring Harb Perspect Med. 2012 Jan;2(1):a008888. doi: 10.1101/cshperspect.a0088.
  • 13. Eriksen JL, Wszolek Z, Petrucelli L. Molecular pathogenesis of Parkinson disease. Arch Neurol. 2005 Mar;62(3):353-7. doi: 10.1001/archneur.62.3.353.
  • 14. Shulman JM, De Jager PL, Feany MB. Parkinson’s disease: genetics and pathogenesis. Annu Rev Pathol. 2011;6:193-222. doi: 10.1146/annurev-pathol-011110-130242.
  • 15. Vila M, Przedborski S. Genetic clues to the pathogenesis of Parkinson’s disease. Nat Med. 2004 Jul;10 Suppl:S58-62. doi: 10.1038/nm1068.
  • 16. Gómez-Benito M, Granado N, García-Sanz P, Michel A, Dumoulin M, Moratalla R. Modeling Parkinson’s Disease With the Alpha-Synuclein Protein. Front Pharmacol. 2020 Apr 23;11:356. doi: 10.3389/fphar.2020.00356.
  • 17. Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, Schrag AE, Lang AE. Parkinson disease. Nat Rev Dis Primers. 2017 Mar 23;3:17013. doi: 10.1038/nrdp.2017.13.
  • 18. Day JO, Mullin S. The Genetics of Parkinson’s Disease and Implications for Clinical Practice. Genes (Basel). 2021 Jun 30;12(7):1006. doi: 10.3390/genes12071006.
  • 19. Oztan G. Parkinson hastalığında genetik mekanizmalar ve gen tedavisi yaklaşımları. In: Dalkılıç M, editor. Scientific Developments for Health and Life Sciences. Ankara: Gece Kitaplığı; 2020. p. 434.
  • 20. Seirafi M, Kozlov G, Gehring K. Parkin structure and function. FEBS J. 2015 Jun;282(11):2076-88. doi: 10.1111/febs.13249.
  • 21. Zhai D, Li S, Zhao Y, Lin Z. SLC6A3 is a risk factor for Parkinson’s Disease: a meta-analysis of sixteen years’ studies. Neurosci Lett. 2014 Apr 3;564:99-104. doi: 10.1016/j.neulet. 2013.10.060.
  • 22. Bu M, Farrer MJ, Khoshbouei H. Dynamic control of the dopamine transporter in neurotransmission and homeostasis. NPJ Parkinsons Dis. 2021 Mar 5;7(1):22. doi: 10.1038/ s41531-021-00161-2.
  • 23. Tabrez S, Jabir NR, Shakil S, Greig NH, Alam Q, Abuzenadah AM, Damanhouri GA, Kamal MA. A synopsis on the role of tyrosine hydroxylase in Parkinson’s Disease. CNS Neurol Disord Drug Targets. 2012 Jun 1;11(4):395-409. doi: 10.2174/187152712800792785.
  • 24. Johnson ME, Salvatore MF, Maiolo SA, Bobrovskaya L. Tyrosine hydroxylase as a sentinel for central and peripheral tissue responses in Parkinson’s progression: Evidence from clinical studies and neurotoxin models. Prog Neurobiol. 2018 Jun- Aug;165-167:1-25. doi: 10.1016/j.pneurobio.2018.01.002.
  • 25. Hougaard KS, Andersen MB, Kjaer SL, Hansen AM, Werge T, Lund SP. Prenatal stress may increase vulnerability to life events: comparison with the effects of prenatal dexamethasone. Dev Brain Res. 2005; 159(1):55-63. doi: 10.1016/j.devbrainres. 2005.06.014.
  • 26. Welberg LAM, Seckl JR. Prenatal Stress, Glucocorticoids and the Programming of the Brain. J Neuroendocrinol. 2001; 13(2):113-128. doi: 10.1046/j.1365-2826.2001.00601.x.
  • 27. Kjaer SL, Hougaard KS, Tasker RA, MacDonald DS, Rosenberg R, Elfving B, Wegener G. Influence of diurnal phase on startle response in adult rats exposed to dexamethasone in utero. Physiol Behav. 2011; 102(5):444-452. doi: 10.1016/j. physbeh.2010.12.015.
  • 28. Maccari S, Morley-Fletcher S. Effects of prenatal restraint stress on the hypothalamus-pituitary-adrenal axis and related behavioural and neurobiological alterations. Psychoneuroendocrinology. 2007 Aug;32 Suppl 1:S10-5. doi: 10.1016/j. psyneuen.2007.06.005.
  • 29. Baier CJ, Pallarés ME, Adrover E, Monteleone MC, Brocco MA, Barrantes FJ, Antonelli MC. Prenatal restraint stress decreases the expression of alpha-7 nicotinic receptor in the brain of adult rat offspring. Stress. 2015;18(4):435-45. doi: 10.3109/10253890.2015.1022148.
  • 30. Bikandi J, San Millán R, Rementeria A, Garaizar J. In silico analysis of complete bacterial genomes: PCR, AFLP-PCR and endonuclease restriction. Bioinformatics. 2004 Mar 22;20(5):798-9. doi: 10.1093/bioinformatics/btg491.
  • 31. Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 2012 Jun 18;13:134. doi: 10.1186/1471-2105-13-134.
  • 32. Raeymaekers, L. Basic principles of quantitative PCR. Mol Biotechnol. 2000; 15: 115–122. https://doi.org/10.1385/ MB:15:2:115
  • 33. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001 Dec;25(4):402-8. doi: 10.1006/meth.2001.1262.
  • 34. Nagatsu T, Nagatsu I. Tyrosine hydroxylase (TH), its cofactor tetrahydrobiopterin (BH4), other catecholamine-related enzymes, and their human genes in relation to the drug and gene therapies of Parkinson’s Disease (PD): historical overview and future prospects. J Neural Transm (Vienna). 2016 Nov;123(11):1255-1278. doi: 10.1007/s00702-016-1596-4.
  • 35. Nagatsu T, Sawada M. Biochemistry of postmortem brains in Parkinson’s Disease: historical overview and future prospects. J Neural Transm Suppl. 2007;(72):113-20. doi: 10.1007/978- 3-211-73574-9_14.
  • 36. Converse AK, Moore CF, Moirano JM, Ahlers EO, Larson JA, Engle JW, Barnhart TE, Murali D, Christian BT, DeJesus OT, Holden JE, Nickles RJ, Schneider ML. Prenatal stress induces increased striatal dopamine transporter binding in adult nonhuman primates. Biol Psychiatry. 2013 Oct 1;74(7):502-10. doi: 10.1016/j.biopsych.2013.04.023.
There are 36 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Biochemistry
Journal Section Research Articles
Authors

İlayda Varol 0009-0000-4037-8612

Ezgi Turunç 0000-0002-7587-7443

Publication Date July 1, 2024
Submission Date November 20, 2023
Acceptance Date January 9, 2024
Published in Issue Year 2024 Issue: Special Issue / International Multidisciplinary Symposium on Drug Research and Development, DRD-2023

Cite

Vancouver Varol İ, Turunç E. Investigation of Gene Expression Levels of Some Proteins Related to the Pathogenesis of Parkinson’s Disease in Rats Exposed to Prenatal Stress. HUJPHARM. 2024(Special Issue / International Multidisciplinary Symposium on Drug Research and Development, DRD-2023):34-45.