Review
BibTex RIS Cite

The Epigenetic Effects Associated with Selective Serotonin Reuptake Inhibitors Treatment

Year 2025, Volume: 45 Issue: 1, 71 - 78, 01.03.2025

Abstract

Depression is the most predominant psychiatric disorder worldwide. Selective serotonin reuptake inhibitors (SSRIs) are well-known drugs among the extensively used antidepressants. Additionally, SSRIs are used in the treatment of other behavioral disorders. The etiology of major depressive disorder (MDD) involves gene- environment interactions. Epigenetic modifications have a crucial role in managing treatment and prognostic benefits. It was shown that there is a clear relationship between SSRIs and epigenetic modifications. The epigenetic mechanisms underlying antidepressant drug treatment remain incompletely
understood. Numerous studies have reported correlations between epigenetic modifications in genes such as BDNF, MAOA, SLC6A4, HTR1A, and HTR1B, as well as genome-wide methylation patterns, and treatment with selective serotonin reuptake inhibitors (SSRIs) in adult patients. Similarly, evidence suggests that prenatal and early-life exposure to SSRIs is associated with adverse outcomes, potentially affecting a child’s physiological, emotional, and psychological development by altering methylation patterns in specific genes compared to non-exposed ones. These findings point to the potential use of epigenetic profiles as biomarkers to predict antidepressant treatment response, as well as to explain their toxicities and side effects. This review examines the impact of SSRI exposure on epigenetic modifications.

Ethical Statement

gerekli değil

Supporting Institution

yoktur

Project Number

yoktur

References

  • 1- Chigome AK, Matsangaise MM, Chukwu BO, Matlala M, Sibanda M, Meyer JC. Review of selective serotonin reuptake inhibitors. SA Pharmaceutical Journal 2017; 84(6), 52-59. https://hdl.handle.net/10520/EJC-b3bd72247
  • 2- Chmielewska N, Szyndler J, Maciejak P, Płaźnik A. Epigenetic mechanisms of stress and depression. Psychiatr Pol. 2019;53(6), 1413-1428. https://doi.org/10.12740/PP/94375
  • 3- Singh D, Singh P, Srivastava P, Kakkar D, Pathak M, Tiwari AK. Development and challenges in the discovery of 5-HT1A and 5-HT7 receptor ligands. Bioorg Chem. 2023;131,106254. https://doi.org/10.1016/j.bioorg.2022.106254
  • 4- Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol. 2010;28(10),1057-1068. https://doi. org/10.1038/nbt.1685
  • 5- Cacabelos R, Tellado I, Cacabelos P. in Ramón Cacabelos, The Epigenetic Machinery in the Life Cycle and Pharmacoepigenetics, In Translational Epigenetics, Pharmacoepigenetics, Academic Press, Volume 10, 2019, Pages 1-100, ISSN 25425358, ISBN 9780128139394, https://doi.org/10.1016/ B978-0-12-813939-4.00001-2
  • 6- Boulle F, Pawluski JL, Homberg JR, Machiels B, Kroeze Y, Kumar N, et al. Developmental fluoxetine exposure increases behavioral despair and alters epigenetic regulation of the hippocampal BDNF gene in adult female offspring. Horm Behav. 2016; 80,47-57. https://doi.org/10.1016/j.yhbeh.2016.01.017
  • 7- Dubovicky M, Belovicova K, Csatlosova K, Bogi E. Risks of using SSRI/SNRI antidepressants during pregnancy and lactation. Interdiscip Toxicol. 2017;10(1), 30. https://doi. org/10.1515/intox-2017-0004
  • 8- Non AL, Binder AM, Kubzansky LD, Michels KB. Genomewide DNA methylation in neonates exposed to maternal depression, anxiety, or SSRI medication during pregnancy. Epigenetics. 2014;9(7),964-972. https://doi.org/10.4161/epi.28853
  • 9- Oberlander TF, Weinberg J, Papsdorf M, Grunau R, Misri S, Devlin AM. Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics. 2008;3(2),97-106. https://doi.org/10.4161/epi.3.2.6034
  • 10- Zaidan H, Ramaswami G, Barak M, Li JB, Gaisler-Salomon I. Pre-reproductive stress and fluoxetine treatment in rats affect offspring A-to-I RNA editing, gene expression and social behavior. Environ Epigenet. 2018;4(2),dvy021. https://doi. org/10.1093/eep/dvy021
  • 11- Meyer LR, Dexter B, Lo C, Kenkel E, Hirai T, Roghair RD, Haskell SE. Perinatal SSRI exposure permanently alters cerebral serotonin receptor mRNA in mice but does not impact adult behaviors. J Matern Fetal Neonatal Med. 2018;31(11),1393- 1401. https://doi.org/10.1080/14767058.2017.1317342
  • 12- Toffoli LV, Rodrigues Jr GM, Oliveira JF, Silva AS, Moreira EG, Pelosi GG et al. Maternal exposure to fluoxetine during gestation and lactation affects the DNA methylation programming of rat’s offspring: modulation by folic acid supplementation. Behav Brain Res. 2014;265,142-147. https://doi. org/10.1016/j.bbr.2014.02.031
  • 13- Silva AS, Toffoli LV, Estrada VB, Veríssimo LF, Francis-Oliveira J, Moreira EG, et al. Maternal exposure to fluoxetine during gestation and lactation induces long lasting changes in the DNA methylation profile of offspring’s brain and affects the social interaction of rat. Brain Res Bull. 2018;142,409-413. https://doi.org/10.1016/j.brainresbull.2018.09.007
  • 14- Kallak TK, Bränn E, Fransson E, Johansson Å, Lager S, Comasco E, et al. DNA methylation in cord blood in association with prenatal depressive symptoms. Clin Epigenetics. 2021;13(1),1-14. https://doi.org/10.1186/s13148-021-01054-0
  • 15- Seo MK, Ly NN, Lee CH, Cho HY, Choi CM, Lee JG, et al. Early life stress increases stress vulnerability through BDNF gene epigenetic changes in the rat hippocampus. Neuropharmacology 2016;105,388-397 https://doi.org/10.1016/j.neuropharm.2016.02.009
  • 16- Gartstein MA, Hookenson KV, Brain U, Devlin AM, Grunau RE, Oberlander TF. Sculpting infant soothability: the role of prenatal SSRI antidepressant exposure and neonatal SLC6A4 methylation status. Dev Psychobiol. 2016;58(6),745-758. https://doi.org/10.1002/dev.21414
  • 17- Unroe KA, Glover ME, Shupe EA, Feng N, Clinton SM. Perinatal SSRI exposure disrupts G protein-coupled receptor BAI3 in developing dentate gyrus and adult emotional behavior: relevance to psychiatric disorders. Neuroscience. 2021; 471, 32- 50. https://doi.org/ 0.1016/j.neuroscience.2021.07.007
  • 18- Spildrejorde M, Leithaug M, Samara A, Aass HCD, Sharma A, Acharya G, ... & Lyle R. Citalopram exposure of hESCs during neuronal differentiation identifies dysregulated genes involved in neurodevelopment and depression. Front. cell dev. biol. 2024;12, 1428538. https://doi.org/ 10.3389/ fcell.2024.1428538
  • 19- Webb LM, Phillips KE, Ho MC, Veldic M, Blacker CJ (2020). The relationship between DNA methylation and antidepressant medications: a systematic review. Int J Mol Sci. 2020;21(3), 826. https://doi.org/10.3390/ijms21030826
  • 20- Xing Y, Sun T, Li G, Xu G, Cheng J, Gao S. The role of BDNF exon I region methylation in the treatment of depression with sertraline and its clinical diagnostic value. J Clin Lab Anal. 2021;35(11),e23993. https://doi.org/10.1002/jcla.23993
  • 21- Martinowich K, Manji H, Lu B. New insights into BDNF function in depression and anxiety. Nat Neurosci. 2007;10(9),1089- 1093. https://doi.org/10.1038/nn1971
  • 22- Blaze J, Asok A, Borrelli K, Tulbert C, Bollinger J, Ronca AE, et al. Intrauterine exposure to maternal stress alters Bdnf IV DNA methylation and telomere length in the brain of adult rat offspring. Int J Dev Neurosci. 2017:62,56-62. https://doi. org/10.1016/j.ijdevneu.2017.03.007
  • 23- Lopez JP, Mamdani F, Labonte B, Beaulieu MM, Yang JP, Berlim MT, et al. Epigenetic regulation of BDNF expression according to antidepressant response. Mol Psychiatry. 2013;18(4),398-399. https://doi.org/10.1038/mp.2012.38
  • 24- Wolkowitz OM, Wolf J, Shelly W, Rosser R, Burke HM, Lerner GK, et al. Serum BDNF levels before treatment predict SSRI response in depression. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(7),1623-1630. https://10.1016/j.pnpbp.2011.06.013
  • 25- Jin HJ, Pei L, Li YN, Zheng H, Yang S, Wan Y, et al. Alleviative effects of fluoxetine on depressive-like behaviors by epigenetic regulation of BDNF gene transcription in mouse model of post-stroke depression. Sci Rep. 2017;7(1),1-15. https://doi. org/10.1038/s41598-017-13929-5
  • 26- Ju C, Fiori LM, Belzeaux R, Theroux JF, Chen GG, Aouabed Z, et al. Integrated genome-wide methylation and expression analyses reveal functional predictors of response to antidepressants. Transl Psychiatry. 2019;9(1),254. https://doi. org/10.1038/s41398-019-0589-0
  • 27- Domschke K, Tidow N, Schwarte K, Ziegler C, Lesch KP, Deckert J, et al. Pharmacoepigenetics of depression: no major influence of MAO-A DNA methylation on treatment response. J Neural Transm. 2015;122(1),99-108. https://doi. org/10.1007/s00702-014-1227-x
  • 28- Iga J, Watanabe SY, Numata S, Umehara H, Nishi A, Kinoshita M, et al. Association study of polymorphism in the serotonin transporter gene promoter, methylation profiles, and expression in patients with major depressive disorder. Hum Psychopharmacol. 2016;31,193–199. https://doi.org/10.1002/hup.2527
  • 29- Okada S, Morinobu S, Fuchikami M, Segawa M, Yokomaku K, Kataoka T, ... & Mimura M. The potential of SLC6A4 gene methylation analysis for the diagnosis and treatment of major depression. J Psychiatr Res. 2024;53, 47-53. https://doi.org/ 10.1016/j.jpsychires.2014.02.002
  • 30- Zou Z, Zhang Y, Huang Y, Wang J, Min W, Xiang M, ... & Li T. Integrated genome-wide methylation and expression analyses provide predictors of diagnosis and early response to antidepressant in panic disorder. J Affect Disord. 2023;322, 146-155. https://doi.org/10.106/j.jad.10.049
  • 31- Schmauss C. An HDAC-dependent epigenetic mechanism that enhances the efficacy of the antidepressant drug fluoxetine. Sci Rep. 2015;5(1),1-8. https://doi.org/10.1038/srep08171
  • 32- Takeuchi N, Nonen S, Kato M, Wakeno M, Takekita Y, Kinoshita T, Kugawa F. Therapeutic response to paroxetine in major depressive disorder predicted by DNA methylation. Neuropsychobiology 2018;75(2),81-88. https://doi.org/10.1159/000480512
  • 33- Martinez-Pinteño A, Rodriguez N, Blázquez A, Plana MT, Varela E, Gassó P, et al. DNA methylation of fluoxetine response in child and adolescence: preliminary results. Pharmgenomics Pers Med. 2021;459-467. https://doi.org/10.2147/PGPM.S289480
  • 34- Katrinli S, King AP, Duval ER, Smith AK, Rajaram N, Liberzon I, Rauch SA. DNA methylation GrimAge acceleration in US military veterans with PTSD. Neuropsychopharmacology. 2023;48(5), 773-780.
  • 35- Wang P, Lv Q, Mao Y, Zhang C, Bao C, Sun H, et al. HTR1A/1B DNA methylation may predict escitalopram treatment response in depressed Chinese Han patients. J Affect Disord. 2018;228,222-228. https://doi.org/10.1016/j.jad.2017.12.010
  • 36- Gassó P, Rodríguez N, Blázquez A, Monteagudo A, Boloc D, Plana MT, et al. Epigenetic and genetic variants in the HTR1B gene and clinical improvement in children and adolescents treated with fluoxetine. Prog Neuropsychopharmacol Biol Psychiatry. 2017;75,28-34. https://doi.org/10.1016/j.pnpbp.2016.12.003
  • 37- Melas PA, Rogdaki M, Lennartsson A, Björk K, Qi H, Witasp A, et al. Antidepressant treatment is associated with epigenetic alterations in the promoter of P11 in a genetic model of depression. Int J Neuropsychopharmacol. 2012;15(5),669-679. https://doi.org/10.1017/S1461145711000940
Year 2025, Volume: 45 Issue: 1, 71 - 78, 01.03.2025

Abstract

Project Number

yoktur

References

  • 1- Chigome AK, Matsangaise MM, Chukwu BO, Matlala M, Sibanda M, Meyer JC. Review of selective serotonin reuptake inhibitors. SA Pharmaceutical Journal 2017; 84(6), 52-59. https://hdl.handle.net/10520/EJC-b3bd72247
  • 2- Chmielewska N, Szyndler J, Maciejak P, Płaźnik A. Epigenetic mechanisms of stress and depression. Psychiatr Pol. 2019;53(6), 1413-1428. https://doi.org/10.12740/PP/94375
  • 3- Singh D, Singh P, Srivastava P, Kakkar D, Pathak M, Tiwari AK. Development and challenges in the discovery of 5-HT1A and 5-HT7 receptor ligands. Bioorg Chem. 2023;131,106254. https://doi.org/10.1016/j.bioorg.2022.106254
  • 4- Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol. 2010;28(10),1057-1068. https://doi. org/10.1038/nbt.1685
  • 5- Cacabelos R, Tellado I, Cacabelos P. in Ramón Cacabelos, The Epigenetic Machinery in the Life Cycle and Pharmacoepigenetics, In Translational Epigenetics, Pharmacoepigenetics, Academic Press, Volume 10, 2019, Pages 1-100, ISSN 25425358, ISBN 9780128139394, https://doi.org/10.1016/ B978-0-12-813939-4.00001-2
  • 6- Boulle F, Pawluski JL, Homberg JR, Machiels B, Kroeze Y, Kumar N, et al. Developmental fluoxetine exposure increases behavioral despair and alters epigenetic regulation of the hippocampal BDNF gene in adult female offspring. Horm Behav. 2016; 80,47-57. https://doi.org/10.1016/j.yhbeh.2016.01.017
  • 7- Dubovicky M, Belovicova K, Csatlosova K, Bogi E. Risks of using SSRI/SNRI antidepressants during pregnancy and lactation. Interdiscip Toxicol. 2017;10(1), 30. https://doi. org/10.1515/intox-2017-0004
  • 8- Non AL, Binder AM, Kubzansky LD, Michels KB. Genomewide DNA methylation in neonates exposed to maternal depression, anxiety, or SSRI medication during pregnancy. Epigenetics. 2014;9(7),964-972. https://doi.org/10.4161/epi.28853
  • 9- Oberlander TF, Weinberg J, Papsdorf M, Grunau R, Misri S, Devlin AM. Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics. 2008;3(2),97-106. https://doi.org/10.4161/epi.3.2.6034
  • 10- Zaidan H, Ramaswami G, Barak M, Li JB, Gaisler-Salomon I. Pre-reproductive stress and fluoxetine treatment in rats affect offspring A-to-I RNA editing, gene expression and social behavior. Environ Epigenet. 2018;4(2),dvy021. https://doi. org/10.1093/eep/dvy021
  • 11- Meyer LR, Dexter B, Lo C, Kenkel E, Hirai T, Roghair RD, Haskell SE. Perinatal SSRI exposure permanently alters cerebral serotonin receptor mRNA in mice but does not impact adult behaviors. J Matern Fetal Neonatal Med. 2018;31(11),1393- 1401. https://doi.org/10.1080/14767058.2017.1317342
  • 12- Toffoli LV, Rodrigues Jr GM, Oliveira JF, Silva AS, Moreira EG, Pelosi GG et al. Maternal exposure to fluoxetine during gestation and lactation affects the DNA methylation programming of rat’s offspring: modulation by folic acid supplementation. Behav Brain Res. 2014;265,142-147. https://doi. org/10.1016/j.bbr.2014.02.031
  • 13- Silva AS, Toffoli LV, Estrada VB, Veríssimo LF, Francis-Oliveira J, Moreira EG, et al. Maternal exposure to fluoxetine during gestation and lactation induces long lasting changes in the DNA methylation profile of offspring’s brain and affects the social interaction of rat. Brain Res Bull. 2018;142,409-413. https://doi.org/10.1016/j.brainresbull.2018.09.007
  • 14- Kallak TK, Bränn E, Fransson E, Johansson Å, Lager S, Comasco E, et al. DNA methylation in cord blood in association with prenatal depressive symptoms. Clin Epigenetics. 2021;13(1),1-14. https://doi.org/10.1186/s13148-021-01054-0
  • 15- Seo MK, Ly NN, Lee CH, Cho HY, Choi CM, Lee JG, et al. Early life stress increases stress vulnerability through BDNF gene epigenetic changes in the rat hippocampus. Neuropharmacology 2016;105,388-397 https://doi.org/10.1016/j.neuropharm.2016.02.009
  • 16- Gartstein MA, Hookenson KV, Brain U, Devlin AM, Grunau RE, Oberlander TF. Sculpting infant soothability: the role of prenatal SSRI antidepressant exposure and neonatal SLC6A4 methylation status. Dev Psychobiol. 2016;58(6),745-758. https://doi.org/10.1002/dev.21414
  • 17- Unroe KA, Glover ME, Shupe EA, Feng N, Clinton SM. Perinatal SSRI exposure disrupts G protein-coupled receptor BAI3 in developing dentate gyrus and adult emotional behavior: relevance to psychiatric disorders. Neuroscience. 2021; 471, 32- 50. https://doi.org/ 0.1016/j.neuroscience.2021.07.007
  • 18- Spildrejorde M, Leithaug M, Samara A, Aass HCD, Sharma A, Acharya G, ... & Lyle R. Citalopram exposure of hESCs during neuronal differentiation identifies dysregulated genes involved in neurodevelopment and depression. Front. cell dev. biol. 2024;12, 1428538. https://doi.org/ 10.3389/ fcell.2024.1428538
  • 19- Webb LM, Phillips KE, Ho MC, Veldic M, Blacker CJ (2020). The relationship between DNA methylation and antidepressant medications: a systematic review. Int J Mol Sci. 2020;21(3), 826. https://doi.org/10.3390/ijms21030826
  • 20- Xing Y, Sun T, Li G, Xu G, Cheng J, Gao S. The role of BDNF exon I region methylation in the treatment of depression with sertraline and its clinical diagnostic value. J Clin Lab Anal. 2021;35(11),e23993. https://doi.org/10.1002/jcla.23993
  • 21- Martinowich K, Manji H, Lu B. New insights into BDNF function in depression and anxiety. Nat Neurosci. 2007;10(9),1089- 1093. https://doi.org/10.1038/nn1971
  • 22- Blaze J, Asok A, Borrelli K, Tulbert C, Bollinger J, Ronca AE, et al. Intrauterine exposure to maternal stress alters Bdnf IV DNA methylation and telomere length in the brain of adult rat offspring. Int J Dev Neurosci. 2017:62,56-62. https://doi. org/10.1016/j.ijdevneu.2017.03.007
  • 23- Lopez JP, Mamdani F, Labonte B, Beaulieu MM, Yang JP, Berlim MT, et al. Epigenetic regulation of BDNF expression according to antidepressant response. Mol Psychiatry. 2013;18(4),398-399. https://doi.org/10.1038/mp.2012.38
  • 24- Wolkowitz OM, Wolf J, Shelly W, Rosser R, Burke HM, Lerner GK, et al. Serum BDNF levels before treatment predict SSRI response in depression. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(7),1623-1630. https://10.1016/j.pnpbp.2011.06.013
  • 25- Jin HJ, Pei L, Li YN, Zheng H, Yang S, Wan Y, et al. Alleviative effects of fluoxetine on depressive-like behaviors by epigenetic regulation of BDNF gene transcription in mouse model of post-stroke depression. Sci Rep. 2017;7(1),1-15. https://doi. org/10.1038/s41598-017-13929-5
  • 26- Ju C, Fiori LM, Belzeaux R, Theroux JF, Chen GG, Aouabed Z, et al. Integrated genome-wide methylation and expression analyses reveal functional predictors of response to antidepressants. Transl Psychiatry. 2019;9(1),254. https://doi. org/10.1038/s41398-019-0589-0
  • 27- Domschke K, Tidow N, Schwarte K, Ziegler C, Lesch KP, Deckert J, et al. Pharmacoepigenetics of depression: no major influence of MAO-A DNA methylation on treatment response. J Neural Transm. 2015;122(1),99-108. https://doi. org/10.1007/s00702-014-1227-x
  • 28- Iga J, Watanabe SY, Numata S, Umehara H, Nishi A, Kinoshita M, et al. Association study of polymorphism in the serotonin transporter gene promoter, methylation profiles, and expression in patients with major depressive disorder. Hum Psychopharmacol. 2016;31,193–199. https://doi.org/10.1002/hup.2527
  • 29- Okada S, Morinobu S, Fuchikami M, Segawa M, Yokomaku K, Kataoka T, ... & Mimura M. The potential of SLC6A4 gene methylation analysis for the diagnosis and treatment of major depression. J Psychiatr Res. 2024;53, 47-53. https://doi.org/ 10.1016/j.jpsychires.2014.02.002
  • 30- Zou Z, Zhang Y, Huang Y, Wang J, Min W, Xiang M, ... & Li T. Integrated genome-wide methylation and expression analyses provide predictors of diagnosis and early response to antidepressant in panic disorder. J Affect Disord. 2023;322, 146-155. https://doi.org/10.106/j.jad.10.049
  • 31- Schmauss C. An HDAC-dependent epigenetic mechanism that enhances the efficacy of the antidepressant drug fluoxetine. Sci Rep. 2015;5(1),1-8. https://doi.org/10.1038/srep08171
  • 32- Takeuchi N, Nonen S, Kato M, Wakeno M, Takekita Y, Kinoshita T, Kugawa F. Therapeutic response to paroxetine in major depressive disorder predicted by DNA methylation. Neuropsychobiology 2018;75(2),81-88. https://doi.org/10.1159/000480512
  • 33- Martinez-Pinteño A, Rodriguez N, Blázquez A, Plana MT, Varela E, Gassó P, et al. DNA methylation of fluoxetine response in child and adolescence: preliminary results. Pharmgenomics Pers Med. 2021;459-467. https://doi.org/10.2147/PGPM.S289480
  • 34- Katrinli S, King AP, Duval ER, Smith AK, Rajaram N, Liberzon I, Rauch SA. DNA methylation GrimAge acceleration in US military veterans with PTSD. Neuropsychopharmacology. 2023;48(5), 773-780.
  • 35- Wang P, Lv Q, Mao Y, Zhang C, Bao C, Sun H, et al. HTR1A/1B DNA methylation may predict escitalopram treatment response in depressed Chinese Han patients. J Affect Disord. 2018;228,222-228. https://doi.org/10.1016/j.jad.2017.12.010
  • 36- Gassó P, Rodríguez N, Blázquez A, Monteagudo A, Boloc D, Plana MT, et al. Epigenetic and genetic variants in the HTR1B gene and clinical improvement in children and adolescents treated with fluoxetine. Prog Neuropsychopharmacol Biol Psychiatry. 2017;75,28-34. https://doi.org/10.1016/j.pnpbp.2016.12.003
  • 37- Melas PA, Rogdaki M, Lennartsson A, Björk K, Qi H, Witasp A, et al. Antidepressant treatment is associated with epigenetic alterations in the promoter of P11 in a genetic model of depression. Int J Neuropsychopharmacol. 2012;15(5),669-679. https://doi.org/10.1017/S1461145711000940
There are 37 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Toxicology
Journal Section Review Articles
Authors

Ayla Kenar 0009-0001-4074-4704

Merve Arici 0000-0001-5850-1578

Fedaa Abo Ras 0000-0002-2290-1622

Mahmoud Abudayyak 0000-0003-2286-4777

Project Number yoktur
Publication Date March 1, 2025
Submission Date August 2, 2024
Acceptance Date February 17, 2025
Published in Issue Year 2025 Volume: 45 Issue: 1

Cite

Vancouver Kenar A, Arici M, Abo Ras F, Abudayyak M. The Epigenetic Effects Associated with Selective Serotonin Reuptake Inhibitors Treatment. HUJPHARM. 2025;45(1):71-8.