[1] Wang D, Liu Y, Ngo HH, Zhang C, Yang Q, Peng L, et al. Approach of describing dynamic production of volatile fatty acids from sludge alkaline fermentation. Bioresour Technol 2017;238:343–51. doi:10.1016/j.biortech.2017.04.054.
[2] Wang D, Wang Y, Liu Y, Ngo HH, Lian Y, Zhao J, et al. Is denitrifying anaerobic methane oxidation-centered technologies a solution for the sustainable operation of wastewater treatment Plants? Bioresour Technol 2017;234:456–65. doi:10.1016/j.biortech.2017.02.059.
[3] Yang G, Wang D, Yang Q, Zhao J, Liu Y, Wang Q, et al. Effect of acetate to glycerol ratio on enhanced biological phosphorus removal. Chemosphere 2018;196:78–86. doi:10.1016/j.chemosphere.2017.12.167.
[4] Li L, He J, Xin X, Wang M, Xu J, Zhang J. Enhanced bioproduction of short-chain fatty acids from waste activated sludge by potassium ferrate pretreatment. Chem Eng J 2018;332:456–63. doi:10.1016/j.cej.2017.09.103.
[5] Wang D, Liu B, Liu X, Xu Q, Yang Q, Liu Y, et al. How does free ammonia-based sludge pretreatment improve methane production from anaerobic digestion of waste activated sludge. Chemosphere 2018;206:491–501. doi:10.1016/j.chemosphere.2018.05.059.
[6] Liu X, Xu Q, Wang D, Zhao J, Wu Y, Liu Y, et al. Improved methane production from waste activated sludge by combining free ammonia with heat pretreatment: Performance, mechanisms and applications. Bioresour Technol 2018;268:230–6. doi:10.1016/j.biortech.2018.07.109.
[7] Leng L, Li J, Yuan X, Li J, Han P, Hong Y, et al. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass. Bioresour Technol 2018;251:49–56. doi:10.1016/j.biortech.2017.12.018.
[8] Sun T, Zhao Z, Liang Z, Liu J, Shi W, Cui F. Efficient As(III) removal by magnetic CuO-Fe3O4 nanoparticles through photo-oxidation and adsorption under light irradiation. J Colloid Interface Sci 2017;495:168–77. doi:10.1016/j.jcis.2017.01.104.
[9] Zhao J, Wang D, Li X, Yang Q, Chen H, Zhong Y, et al. Free nitrous acid serving as a pretreatment method for alkaline fermentation to enhance short-chain fatty acid production from waste activated sludge. Water Res 2015;78:111–20. doi:10.1016/j.watres.2015.04.012.
[10] Shao L, Wang X, Xu H, He P. Enhanced anaerobic digestion and sludge dewaterability by alkaline pretreatment and its mechanism. J Environ Sci (China) 2012;24:1731–8. doi:10.1016/S1001-0742(11)61031-0.
[11] Xu Q, Li X, Ding R, Wang D, Liu Y, Wang Q, et al. Understanding and mitigating the toxicity of cadmium to the anaerobic fermentation of waste activated sludge. Water Res 2017;124:269–79. doi:10.1016/j.watres.2017.07.067.
[12] Wang D, Duan YY, Yang Q, Liu Y, Ni BJ, Wang Q, et al. Free ammonia enhances dark fermentative hydrogen production from waste activated sludge. Water Res 2018;133:272–81. doi:10.1016/j.watres.2018.01.051.
[13] Wang D, Liu X, Zeng G, Zhao J, Liu Y, Wang Q, et al. Understanding the impact of cationic polyacrylamide on anaerobic digestion of waste activated sludge. Water Res 2018;130:281–90. doi:10.1016/j.watres.2017.12.007.
[14] Wang D, Shuai K, Xu Q, Liu X, Li Y, Liu Y, et al. Enhanced short-chain fatty acids production from waste activated sludge by combining calcium peroxide with free ammonia pretreatment. Bioresour Technol 2018;262:114–23.doi:10.1016/j.biortech.2018.04.081.
[15] Xu Q, Liu X, Fu Y, Li Y, Wang D, Wang Q, et al. Feasibility of enhancing short-chain fatty acids production from waste activated sludge after free ammonia pretreatment: Role and significance of rhamnolipid. Bioresour Technol 2018;267:141–8. doi:10.1016/j.biortech.2018.07.018.
[16] Dai X, Hu C, Zhang D, Dai L, Duan N. Impact of a high ammonia-ammonium-pH system on methane-producing archaea and sulfate-reducing bacteria in mesophilic anaerobic digestion. Bioresour Technol 2017;245:598–605. doi:10.1016/j.biortech.2017.08.208.
[17] Hu J, Zhao J, Wang D, Li X, Zhang D, Xu Q, et al. Effect of diclofenac on the production of volatile fatty acids from anaerobic fermentation of waste activated sludge. Bioresour Technol 2018;254:7–15. doi:10.1016/j.biortech.2018.01.059.
[18] Zhao J, Liu Y, Wang D, Chen F, Li X, Zeng G, et al. Potential impact of salinity on methane production from food waste anaerobic digestion. Waste Manag 2017;67:308–14. doi:10.1016/j.wasman.2017.05.016.
[19] Wei W, Zhou X, Wang D, Sun J, Wang Q. Free ammonia pre-treatment of secondary sludge significantly increases anaerobic methane production. Water Res 2017;118:12–9. doi:10.1016/j.watres.2017.04.015.
[20] Anthonisen A, Loehr R, Prakasam T, Srinath E. Inhibition of Nitrification by Ammonia and Nitrous Acid. J Water Pollut Control Fed 1976;48:835–52. doi:10.1017/CBO9781107415324.004.
[21] Mccarty PL, Mckinney RE. Salt Toxicity in Anaerobic Digestion. Source J (Water Pollut Control Fed 1961;33:399–415. doi:10.2307/25034396.
[22] Nakakubo R, Møller HB, Nielsen AM, Matsuda J. Ammonia Inhibition of Methanogenesis and Identification of Process Indicators during Anaerobic Digestion. Environ Eng Sci 2008;25:1487–96. doi:10.1089/ees.2007.0282.
[23] Gallert C, Winter J. Mesophilic and thermophilic
SERBEST AMONYAK İLE ÖN ARITIMIN ANAEROBİK ÇÜRÜTME PERFORMANSINA ETKİLERİ
Year 2018,
Volume: 3 Issue: 3, 302 - 308, 31.12.2018
Atıksu arıtma tesislerinin sayısının artması tesislerde üretilen çamurun
miktarının artışını da beraberinde getirmektedir. Üretilen çamurun arıtımı ve
bertarafının maliyeti, atıksu arıtma tesislerinin işletim maliyetinin % 60’ına
tekabül etmektedir. Mevcut teknolojilerinin kullanım sınırlamaları, maliyeti
azaltma çabaları ve yasal zorunluluklar çamur azaltma stratejilerine yönelmeyi
zorunlu kılmaktadır. Günümüzde birçok mekanik, kimyasal ve biyolojik yöntem,
çamuru hem atıksu arıtım aşamasında hem de çamur üretildikten sonra anaerobik
çürütücü öncesi bir ön arıtım şeklinde yaygın olarak kullanılmaktadır. Serbest
amonyağın, hücre zarından yayılabilir ve enerji tüketimi olmaksızın iki taraf
arasındaki protonları hareket ettirebilir olma özelliği hücre içindeki proton
ve potasyum dengesini kırarak hücre inaktivasyonuna yol açmaktadır. Bununla
birlikte, son zamanlarda yapılan çalışmalar, serbest amonyak kullanımı ile
yenilikçi bir atık aktif çamur ön arıtma teknolojisini gündeme getirmiştir.
Anaerobik çürütme öncesi bir ön işlem olarak serbest amonyak uygulanması
anaerobik çürütmenin hız sınırlayıcı adımı olan hidroliz aşamasını ve metan
üretimini hızlandırmaktadır Bu çalışmada, anaerobik çürütücü sıvısından elde
edilen serbest amonyak ile ön işlemin anaerobik çürütücü üzerine etkilerini
araştırmaya yönelik yapılan çalışmalar irdelenmiştir.
[1] Wang D, Liu Y, Ngo HH, Zhang C, Yang Q, Peng L, et al. Approach of describing dynamic production of volatile fatty acids from sludge alkaline fermentation. Bioresour Technol 2017;238:343–51. doi:10.1016/j.biortech.2017.04.054.
[2] Wang D, Wang Y, Liu Y, Ngo HH, Lian Y, Zhao J, et al. Is denitrifying anaerobic methane oxidation-centered technologies a solution for the sustainable operation of wastewater treatment Plants? Bioresour Technol 2017;234:456–65. doi:10.1016/j.biortech.2017.02.059.
[3] Yang G, Wang D, Yang Q, Zhao J, Liu Y, Wang Q, et al. Effect of acetate to glycerol ratio on enhanced biological phosphorus removal. Chemosphere 2018;196:78–86. doi:10.1016/j.chemosphere.2017.12.167.
[4] Li L, He J, Xin X, Wang M, Xu J, Zhang J. Enhanced bioproduction of short-chain fatty acids from waste activated sludge by potassium ferrate pretreatment. Chem Eng J 2018;332:456–63. doi:10.1016/j.cej.2017.09.103.
[5] Wang D, Liu B, Liu X, Xu Q, Yang Q, Liu Y, et al. How does free ammonia-based sludge pretreatment improve methane production from anaerobic digestion of waste activated sludge. Chemosphere 2018;206:491–501. doi:10.1016/j.chemosphere.2018.05.059.
[6] Liu X, Xu Q, Wang D, Zhao J, Wu Y, Liu Y, et al. Improved methane production from waste activated sludge by combining free ammonia with heat pretreatment: Performance, mechanisms and applications. Bioresour Technol 2018;268:230–6. doi:10.1016/j.biortech.2018.07.109.
[7] Leng L, Li J, Yuan X, Li J, Han P, Hong Y, et al. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass. Bioresour Technol 2018;251:49–56. doi:10.1016/j.biortech.2017.12.018.
[8] Sun T, Zhao Z, Liang Z, Liu J, Shi W, Cui F. Efficient As(III) removal by magnetic CuO-Fe3O4 nanoparticles through photo-oxidation and adsorption under light irradiation. J Colloid Interface Sci 2017;495:168–77. doi:10.1016/j.jcis.2017.01.104.
[9] Zhao J, Wang D, Li X, Yang Q, Chen H, Zhong Y, et al. Free nitrous acid serving as a pretreatment method for alkaline fermentation to enhance short-chain fatty acid production from waste activated sludge. Water Res 2015;78:111–20. doi:10.1016/j.watres.2015.04.012.
[10] Shao L, Wang X, Xu H, He P. Enhanced anaerobic digestion and sludge dewaterability by alkaline pretreatment and its mechanism. J Environ Sci (China) 2012;24:1731–8. doi:10.1016/S1001-0742(11)61031-0.
[11] Xu Q, Li X, Ding R, Wang D, Liu Y, Wang Q, et al. Understanding and mitigating the toxicity of cadmium to the anaerobic fermentation of waste activated sludge. Water Res 2017;124:269–79. doi:10.1016/j.watres.2017.07.067.
[12] Wang D, Duan YY, Yang Q, Liu Y, Ni BJ, Wang Q, et al. Free ammonia enhances dark fermentative hydrogen production from waste activated sludge. Water Res 2018;133:272–81. doi:10.1016/j.watres.2018.01.051.
[13] Wang D, Liu X, Zeng G, Zhao J, Liu Y, Wang Q, et al. Understanding the impact of cationic polyacrylamide on anaerobic digestion of waste activated sludge. Water Res 2018;130:281–90. doi:10.1016/j.watres.2017.12.007.
[14] Wang D, Shuai K, Xu Q, Liu X, Li Y, Liu Y, et al. Enhanced short-chain fatty acids production from waste activated sludge by combining calcium peroxide with free ammonia pretreatment. Bioresour Technol 2018;262:114–23.doi:10.1016/j.biortech.2018.04.081.
[15] Xu Q, Liu X, Fu Y, Li Y, Wang D, Wang Q, et al. Feasibility of enhancing short-chain fatty acids production from waste activated sludge after free ammonia pretreatment: Role and significance of rhamnolipid. Bioresour Technol 2018;267:141–8. doi:10.1016/j.biortech.2018.07.018.
[16] Dai X, Hu C, Zhang D, Dai L, Duan N. Impact of a high ammonia-ammonium-pH system on methane-producing archaea and sulfate-reducing bacteria in mesophilic anaerobic digestion. Bioresour Technol 2017;245:598–605. doi:10.1016/j.biortech.2017.08.208.
[17] Hu J, Zhao J, Wang D, Li X, Zhang D, Xu Q, et al. Effect of diclofenac on the production of volatile fatty acids from anaerobic fermentation of waste activated sludge. Bioresour Technol 2018;254:7–15. doi:10.1016/j.biortech.2018.01.059.
[18] Zhao J, Liu Y, Wang D, Chen F, Li X, Zeng G, et al. Potential impact of salinity on methane production from food waste anaerobic digestion. Waste Manag 2017;67:308–14. doi:10.1016/j.wasman.2017.05.016.
[19] Wei W, Zhou X, Wang D, Sun J, Wang Q. Free ammonia pre-treatment of secondary sludge significantly increases anaerobic methane production. Water Res 2017;118:12–9. doi:10.1016/j.watres.2017.04.015.
[20] Anthonisen A, Loehr R, Prakasam T, Srinath E. Inhibition of Nitrification by Ammonia and Nitrous Acid. J Water Pollut Control Fed 1976;48:835–52. doi:10.1017/CBO9781107415324.004.
[21] Mccarty PL, Mckinney RE. Salt Toxicity in Anaerobic Digestion. Source J (Water Pollut Control Fed 1961;33:399–415. doi:10.2307/25034396.
[22] Nakakubo R, Møller HB, Nielsen AM, Matsuda J. Ammonia Inhibition of Methanogenesis and Identification of Process Indicators during Anaerobic Digestion. Environ Eng Sci 2008;25:1487–96. doi:10.1089/ees.2007.0282.
[23] Gallert C, Winter J. Mesophilic and thermophilic
Demir, Ö., Uçar, D., & Ateş, N. (2018). SERBEST AMONYAK İLE ÖN ARITIMIN ANAEROBİK ÇÜRÜTME PERFORMANSINA ETKİLERİ. Harran Üniversitesi Mühendislik Dergisi, 3(3), 302-308.