[1] Abdul Aleem, M. I. and Arumairaj, P. D. 2012. Geopolymer concrete- a review. International Journal of Engineering Sciences & Emerging Technologies. 1: 118-122.
[2] SinghIshwarya, B., Gupta, G.M., and Bhattacharyya, S.K. 2015. Geopolymer concrete: A review of some recent developments. Construction and Building Materials. 85: 78-90.
[3] Jia, Z., Yang, Y., Yang, L., Zhang, Y., and Sun, Z. 2018. Hydration products, internal relative humidity and drying shrinkage of alkali activated slag mortar with expansion agents. Construction and Building Materials. 158: 198-207.
[4] Shi, C. 2003. Corrosion resistance of alkali-activated slag cement. Adv. Cem. Res. 15: 77–81.
[5] Zhang, J., Shi, C., Zhang, Z. and Ou Z. 2017. Durability of alkali-activated materials in aggressive environments: a review on recent studies. Constr. Build. Mater. 152: 598–613.
[6] Collins, F. and Sanjayan J. 2000. Effect of pore size distribution on drying shrinking of alkali-activated slag concrete. Cem. Concr. Res. 30: 1401–1406.
[7] Ye, H., Cartwright, C., Rajabipour, F. and Radlin´ ska A. 2017. Understanding the drying shrinkage performance of alkali-activated slag mortars. Cem. Concr. Compos. 76: 13–24.
[8] Ye, H. and Radlin´ ska A. 2016. Shrinkage mechanisms of alkali-activated slag. Cem. Concr. Res. 88: 126–135.
[9] Duran Atis, C., Bilim, C., Çelik Ö. ve Karahan O. 2009. Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar. Constr. Build. Mater. 23: 548–555.
[10] Palacios, M. and Puertas F. 2007. Effect of shrinkage-reducing admixtures on the properties of alkali-activated slag mortars and pastes. Cem. Concr. Res. 37: 691–702.
[11] Cartwright, C., Rajabipour, F. and Radlin´ ska A. 2014. Shrinkage characteristics of alkaliactivated slag cements, J. Mater. Civ. Eng. 27: B4014007.
[12] Hansen, T. 1969. Drying shrinkage of concrete due to capillary action. Matériaux et Construction 2: 7–9.
[13] Lee, N., Jang, J. and Lee, H. 2014. Shrinkage characteristics of alkali-activated fly ash/slag paste and mortar at early ages. Cem. Concr. Compos. 53: 239–248.
[14] Lecomte, I. Henrist, C. Liegeois, M. Maseri, F. Rulmont, A. and Cloots R. 2006. (Micro)- structural comparison between geopolymers, alkali-activated slag cement and Portland cement. J. Eur. Ceram. Soc. 26: 3789–3797.
[15] Bakharev, T., Sanjayan, J. and Cheng, Y.-B. 2000. Effect of admixtures on properties of alkali-activated slag concrete. Cem. Concr. Res. 30: 1367–1374.
[16] Yang, L.Y., Jia, Z.J., Zhang, Y.M. and Dai, J.G. 2015. Effects of nano-TiO2 on strength, shrinkage and microstructure of alkali activated slag pastes. Cem. Concr. Compos. 57: 1–7.
[17] Kristiawan, S. 2012. Evaluation of models for estimating shrinkage stress in patch repair system. nternational Journal of Concrete Structures and Materials. 6: 221-230.
[18] Khan, M. 2013. Ring test for the measurement of restrained shrinkage of concrete. Applied Mechanics and Materials. Vol. 377: 86-91.
[19] Beushausen, H. and Chilwesa, M. 2013. Assessment and prediction of drying shrinkage in bonded mortar overlays. Cement and Concrete Research. 53: 256-266.
[20] Collins, F. and Sanjayan, J. G. 1999. Workability and mechanical properties of alkali-activated slag concrete. Cem. Concr. Res. 29: 455-458.
[21] Collins, F. and Sanjayan, J. G. 2000. Effect of pore size distribution on drying shrinkage of alkali-activated slag concrete. Cem. Concr. Res. 30: 1401-1406.
[22] Mobili, A., Belli, A., Giosué, C., Bellezze, T., and Tittarelli, F. 2016. Metakaolin and fly ash alkali-activated mortars compared with cementitious mortars at the same strength class. Cement and Concrete Research. 88: 198-210.
[23] Wallah, S. and Hardjito, D. 2014. Assessing the shrinkage and creep of alkali-activated concrete binders. In Handbook of Alkali-Activated Cements, Mortars and Concretes.
[24] Gao, X., Yu, Q., and Brouwers, H. 2016. Assessing the porosity and shrinkage of alkali activated slag-fly ash composites designed applying a packing model. Construction and Building Materials. 119: 175-184.
[25] Ma, Y. and Ye, G. 2015. The shrinkage of alkali activated fly ash. Cement and Concrete Research. 68: 75-82.
[26] Krizan, D. and Zivanovic, B., 2002. Effects of dosage and modulus of water glass on early hydration of alkali–slag cements. Cement and concrete research. 32: 1181-1188.
[27] Neto, A.A.M., Cincotto, M.A. and Repette, W. 2008. Drying and autogenous shrinkage of pastes and mortars with activated slag cement. Cement and Concrete Research. 38: 565-574.
[28] Neto, A.A.M., Cincotto, M.A. and Repette, W., 2010. Mechanical properties, drying and autogenous shrinkage of blast furnace slag activateFatid with hydrated lime and gypsum. Cement and Concrete Composites. 32: 312-318.
[29] Aydın, S. and Baradan, B. 2012. Mechanical and microstructural properties of heat cured alkali-activated slag mortars. Materials and Design. 35: 374-383.
[30] Chi, M.-C., Chang, J.-J. and Huang, R. 2012. Strength and drying shrinkage of alkali-activated slag paste and mortar. Advances in Civil Engineering.
[31] Ye, H., Cartwright, C., Rajabipour, F. and Radlińska, A., 2017. Understanding the drying shrinkage performance of alkali-activated slag mortars. Cement and Concrete Composites, 76: 13-24.
[32] Crentsil, K.S., Brown T. and Taylor, A. 2013. Drying shrinkage and creep performance of geopolymer concrete. Journal of Sustainable Cement-Based Materials. 2: 35-42.
[33] Un, C.H., Sanjayan, J.G., San Nicolas R. and Van Deventer J.S.J. 2014. Predictions of long-term deflection of geopolymer concrete beams. Construction and Building Materials. 94: 10-19.
[34] Castel, A., Foster, S.J., Ng, T. et al. 2016. Creep and drying shrinkage of a blended slag and low calcium fly ash geopolymer Concrete. Mater. Struct. 49: 1619.
[35] Hardjito, D., Wallah, S.E., Sumajouw, D.M.J., and Rangan, B.V. 2004.On the development of fly ash-based geopolymer concrete. ACI Materials Journal. 101: 467-472.
[36] Wallah, S. and Rangan, B.V. 2006. Low-calcium fly ash-based geopolymer concrete: Long-term properties. Res. Report-GC2, Curtin University, Australia, 76-80.
[37] Liu, H., Lu, Z., and Peng, Z. 2014. Test research on prestressed beam of inorganic polymer concrete. Materials and Structures.
[38] Lee, N.P. 2007. Creep and shrinkage of inorganic polymer concrete. In BRANZ Study Report SR 175, BRANZ Ltd., Judgeford, New Zealand.
[39] Ridtirud, C., Chindaprasirt, P., and Pimraksa, K. 2011. Factors affecting the shrinkage of fly ash geopolymeras. International Journal of Minerals Metallurgy and Materials. 18: 100-104.
Alkali Aktivatör Parametrelerinin ve Test Koşullarının Geopolimer Betonların Büzülme ve Sünme Davranışı Üzerine Etkisi
Year 2018,
Volume: 3 Issue: 3, 93 - 101, 31.12.2018
Geopolimer yapı malzemelerinin zamana bağlı deformasyon davranışını
araştırmak için bugüne kadar çeşitli çalışmalar yapılmıştır. Bu çalışmalarda
çeşitli parametrelerle üretilen geopolimer harçların veya betonların büzülme ve
sünme değerleri bildirilmiştir. Bu çalışmada, önceki araştırmalarda sunulan
deney sonuçlarını etkileyen parametreleri değerlendirmek üzere literatür özeti
sunulmuştur. Karışıma giren malzemelerin özellikleri, karışım oranları ve
kürleme koşulları gibi kritik parametrelerin geopolimer harçların deformasyon
özellikleri üzerindeki etkileri irdelenmiştir.
[1] Abdul Aleem, M. I. and Arumairaj, P. D. 2012. Geopolymer concrete- a review. International Journal of Engineering Sciences & Emerging Technologies. 1: 118-122.
[2] SinghIshwarya, B., Gupta, G.M., and Bhattacharyya, S.K. 2015. Geopolymer concrete: A review of some recent developments. Construction and Building Materials. 85: 78-90.
[3] Jia, Z., Yang, Y., Yang, L., Zhang, Y., and Sun, Z. 2018. Hydration products, internal relative humidity and drying shrinkage of alkali activated slag mortar with expansion agents. Construction and Building Materials. 158: 198-207.
[4] Shi, C. 2003. Corrosion resistance of alkali-activated slag cement. Adv. Cem. Res. 15: 77–81.
[5] Zhang, J., Shi, C., Zhang, Z. and Ou Z. 2017. Durability of alkali-activated materials in aggressive environments: a review on recent studies. Constr. Build. Mater. 152: 598–613.
[6] Collins, F. and Sanjayan J. 2000. Effect of pore size distribution on drying shrinking of alkali-activated slag concrete. Cem. Concr. Res. 30: 1401–1406.
[7] Ye, H., Cartwright, C., Rajabipour, F. and Radlin´ ska A. 2017. Understanding the drying shrinkage performance of alkali-activated slag mortars. Cem. Concr. Compos. 76: 13–24.
[8] Ye, H. and Radlin´ ska A. 2016. Shrinkage mechanisms of alkali-activated slag. Cem. Concr. Res. 88: 126–135.
[9] Duran Atis, C., Bilim, C., Çelik Ö. ve Karahan O. 2009. Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar. Constr. Build. Mater. 23: 548–555.
[10] Palacios, M. and Puertas F. 2007. Effect of shrinkage-reducing admixtures on the properties of alkali-activated slag mortars and pastes. Cem. Concr. Res. 37: 691–702.
[11] Cartwright, C., Rajabipour, F. and Radlin´ ska A. 2014. Shrinkage characteristics of alkaliactivated slag cements, J. Mater. Civ. Eng. 27: B4014007.
[12] Hansen, T. 1969. Drying shrinkage of concrete due to capillary action. Matériaux et Construction 2: 7–9.
[13] Lee, N., Jang, J. and Lee, H. 2014. Shrinkage characteristics of alkali-activated fly ash/slag paste and mortar at early ages. Cem. Concr. Compos. 53: 239–248.
[14] Lecomte, I. Henrist, C. Liegeois, M. Maseri, F. Rulmont, A. and Cloots R. 2006. (Micro)- structural comparison between geopolymers, alkali-activated slag cement and Portland cement. J. Eur. Ceram. Soc. 26: 3789–3797.
[15] Bakharev, T., Sanjayan, J. and Cheng, Y.-B. 2000. Effect of admixtures on properties of alkali-activated slag concrete. Cem. Concr. Res. 30: 1367–1374.
[16] Yang, L.Y., Jia, Z.J., Zhang, Y.M. and Dai, J.G. 2015. Effects of nano-TiO2 on strength, shrinkage and microstructure of alkali activated slag pastes. Cem. Concr. Compos. 57: 1–7.
[17] Kristiawan, S. 2012. Evaluation of models for estimating shrinkage stress in patch repair system. nternational Journal of Concrete Structures and Materials. 6: 221-230.
[18] Khan, M. 2013. Ring test for the measurement of restrained shrinkage of concrete. Applied Mechanics and Materials. Vol. 377: 86-91.
[19] Beushausen, H. and Chilwesa, M. 2013. Assessment and prediction of drying shrinkage in bonded mortar overlays. Cement and Concrete Research. 53: 256-266.
[20] Collins, F. and Sanjayan, J. G. 1999. Workability and mechanical properties of alkali-activated slag concrete. Cem. Concr. Res. 29: 455-458.
[21] Collins, F. and Sanjayan, J. G. 2000. Effect of pore size distribution on drying shrinkage of alkali-activated slag concrete. Cem. Concr. Res. 30: 1401-1406.
[22] Mobili, A., Belli, A., Giosué, C., Bellezze, T., and Tittarelli, F. 2016. Metakaolin and fly ash alkali-activated mortars compared with cementitious mortars at the same strength class. Cement and Concrete Research. 88: 198-210.
[23] Wallah, S. and Hardjito, D. 2014. Assessing the shrinkage and creep of alkali-activated concrete binders. In Handbook of Alkali-Activated Cements, Mortars and Concretes.
[24] Gao, X., Yu, Q., and Brouwers, H. 2016. Assessing the porosity and shrinkage of alkali activated slag-fly ash composites designed applying a packing model. Construction and Building Materials. 119: 175-184.
[25] Ma, Y. and Ye, G. 2015. The shrinkage of alkali activated fly ash. Cement and Concrete Research. 68: 75-82.
[26] Krizan, D. and Zivanovic, B., 2002. Effects of dosage and modulus of water glass on early hydration of alkali–slag cements. Cement and concrete research. 32: 1181-1188.
[27] Neto, A.A.M., Cincotto, M.A. and Repette, W. 2008. Drying and autogenous shrinkage of pastes and mortars with activated slag cement. Cement and Concrete Research. 38: 565-574.
[28] Neto, A.A.M., Cincotto, M.A. and Repette, W., 2010. Mechanical properties, drying and autogenous shrinkage of blast furnace slag activateFatid with hydrated lime and gypsum. Cement and Concrete Composites. 32: 312-318.
[29] Aydın, S. and Baradan, B. 2012. Mechanical and microstructural properties of heat cured alkali-activated slag mortars. Materials and Design. 35: 374-383.
[30] Chi, M.-C., Chang, J.-J. and Huang, R. 2012. Strength and drying shrinkage of alkali-activated slag paste and mortar. Advances in Civil Engineering.
[31] Ye, H., Cartwright, C., Rajabipour, F. and Radlińska, A., 2017. Understanding the drying shrinkage performance of alkali-activated slag mortars. Cement and Concrete Composites, 76: 13-24.
[32] Crentsil, K.S., Brown T. and Taylor, A. 2013. Drying shrinkage and creep performance of geopolymer concrete. Journal of Sustainable Cement-Based Materials. 2: 35-42.
[33] Un, C.H., Sanjayan, J.G., San Nicolas R. and Van Deventer J.S.J. 2014. Predictions of long-term deflection of geopolymer concrete beams. Construction and Building Materials. 94: 10-19.
[34] Castel, A., Foster, S.J., Ng, T. et al. 2016. Creep and drying shrinkage of a blended slag and low calcium fly ash geopolymer Concrete. Mater. Struct. 49: 1619.
[35] Hardjito, D., Wallah, S.E., Sumajouw, D.M.J., and Rangan, B.V. 2004.On the development of fly ash-based geopolymer concrete. ACI Materials Journal. 101: 467-472.
[36] Wallah, S. and Rangan, B.V. 2006. Low-calcium fly ash-based geopolymer concrete: Long-term properties. Res. Report-GC2, Curtin University, Australia, 76-80.
[37] Liu, H., Lu, Z., and Peng, Z. 2014. Test research on prestressed beam of inorganic polymer concrete. Materials and Structures.
[38] Lee, N.P. 2007. Creep and shrinkage of inorganic polymer concrete. In BRANZ Study Report SR 175, BRANZ Ltd., Judgeford, New Zealand.
[39] Ridtirud, C., Chindaprasirt, P., and Pimraksa, K. 2011. Factors affecting the shrinkage of fly ash geopolymeras. International Journal of Minerals Metallurgy and Materials. 18: 100-104.
Mermerdaş, K., & Ekmen, Ş. (2018). Alkali Aktivatör Parametrelerinin ve Test Koşullarının Geopolimer Betonların Büzülme ve Sünme Davranışı Üzerine Etkisi. Harran Üniversitesi Mühendislik Dergisi, 3(3), 93-101.