Research Article
BibTex RIS Cite

Şanlıurfa İstasyonunun Aylık Ortalama Güneşlenme Şiddetinin Farklı Yöntemler ile Trend Analizi

Year 2020, Volume: 5 Issue: 3, 227 - 238, 25.12.2020
https://doi.org/10.46578/humder.828025

Abstract

Güneşlenme şiddeti (solar radyasyon), çeşitli fiziksel, kimyasal ve biyolojik süreçlerin enerji dengelerinde önemli bir rol oynar. Güneş enerjisinin ana parametresi olan güneşlenme şiddetinin miktarındaki değişimler, hidrolojik döngüyü, ekosistemi ve iklimin değişimini büyük ölçüde etkiler. Bunun yanında, güneş enerjisi, fosil yakıtlar gibi geleneksel kaynaklardan çok daha düşük bir çevre kirliliğine sahiptir. Dünyanın dört bir yanındaki tüm yenilenebilir ve sürdürülebilir enerji kaynaklarının en bol olanı güneş enerjisi, ticari olarak ta çok geniş çapta kullanılmaktadır. Bu nedenden dolayı, güneşlenme şiddetinin zamansal ve mekânsal değişimlerinin doğru belirlenmesi ve anlaşılması, meteorolojik ve hidrolojik süreçler, tarımsal ve endüstriyel üretim ile birlikte güneşten enerji üretimi açısından büyük önem taşımaktadır. Bu çalışmada, Şanlıurfa iline ait, 1982-2010 yılları arasındaki yıllık ve aylık ortalama güneşlenme şiddeti değerleri parametrik olmayan Mann-Kendall ve Spearman’ın Rho ve Yenilikçi Şen Yöntemleri ile trend analizi yapılmıştır. Trend eğimleri ise Sen’in Trend Eğim Metodu ile yapılmıştır. İç bağımlılık etkilerinden arındırılmış zaman serilerinin trend analizi sonucunda, Mann-Kendall ve Spearman’ın Rho testlerinde sadece Mart ve Ekim aylarında anlamlı artan yönde trend belirlenmiştir. Ancak Şen’in trend testi ile yapılan trend analizi çalışmasında aylık ve yıllık güneşlenme şiddeti değerlerinde anlamlı artan yönde trend belirlenmiştir. Sen’in trend eğim metoduna göre en fazla artış yıllık 3.21 cal/cm2 ile Mayıs ayında, en az artış ise yıllık 0.44 cal/cm2 ile Şubat ayında gerçekleşmiştir.

References

  • [1] C. Beer, M. Reichstein, E. Tomelleri, P. Ciais, M. Jung, N.C. Carvalhais, Rodenbeck, M.A. Arain, D. Baldocchi, G.B. Bonan, Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate, Science 329 (2010) 834-838.
  • [2] M.D. Islam, I. Kubo, M. Ohadi, A.A. Alili, Measurement of solar energy radiation in Abu Dhabi, UAE, Appl. Energy 86 (2009) 511-515.
  • [3] T. Khatib, A. Mohamed, K. Sopian, A review of solar energy modeling techniques, Renew. Sustain. Energy Rev. 16 (2012) 2864-2869.
  • [4] H.C. Power, Trends in solar radiation over Germany and an assessment of the role of aerosols and sunshine duration, Theor. Appl. Climatol. 76 (2003) 47-63.
  • [5] V. Russak, Changes in solar radiation and their influence on temperature trend in Estonia. J. Geophys. Res. 308 (2009) 49-50.
  • [6] V. Silva, R.A. Silva, E.P. Cavalcanti, C.C. Braga, P.V. Azevedo, V.P. Singh, E.R. Pereira, Trends in solar radiation in NCEP/NCAR database and measurements in northeastern Brazil, J. Sol. Energy 84 (2010) 1852-1862.
  • [7] S.T. Turnock, D.V. Spracklen, K.S. Carslaw, G.W. Mann, M.T. Woodhouse, P.M. Forster, J. Haywood, C.E. Johnson, M. Dalvi, N. Bellouin, Modelled and observed changes in aerosols and surface solar radiation over Europe between 1960 and 2009. Atmos. Chem. Phys. 15 (2015) 13457-13513.
  • [8] T. Caloiero, R. Coscarelli, E. Ferrari, M. Mancini, Trend detection of annual and seasonal rainfall in Calabria (Southern Italy), Int. J. Climatol. 31 (2011) 44-56.
  • [9] H. Tabari, S. Marofi, M. Ahmadi, Long-term variations of water quality parameters in the Maroon River, Iran. Environ. Mon. Assess 177 (2011) 273.
  • [10] R.K. Chowdhury, S. Beecham, J. Boland, J Piantadosi, Understanding South Australian rainfall trends and step changes, Int. J. Climatol. 35 (2015) 348-360.
  • [11] E. Eris, and N. Agiralioglu, Homogeneity and trend analysis of hydrometeorological data of the Eastern Black Sea Region, Turkey. Journal of Water Resource and Protection, 4 (2012) 92-105.
  • [12] K. Yenigün, V. Gümüş, H. Bulut, Trends in streamflow of the Euphrates basin, Turkey. In: Proceedings of the Institution of Civil Engineers-Water Management. 161:4 (2008) 189-198.
  • [13] V. Gumus, Spatio‐temporal precipitation and temperature trend analysis of the Seyhan–Ceyhan River Basins, Turkey. Meteorological Applications, 26:3 (2019), 369-384.
  • [14] Z. Şen, Innovative trend analysis methodology, J. Hydrol. Eng. 17 (2012) 1042-1046.
  • [15] M. Ay, O. Kisi, Investigation of trend analysis of monthly total precipitation by an innovative method. Theor. Appl. Climatol. 120 (2015), 617-629.
  • [16] O. Kisi, An innovative method for trend analysis of monthly pan evaporations. Jour. Hydrol. 527 (2015) 1123-1129.
  • [17] H. Wu, H. Qian, Innovative trend analysis of annual and seasonal rainfall and extreme values in Shaanxi, China, since the 1950s, Int. J. Climatol. 37:5 (2017), 2582-2592.
  • [18] C. Liu, X. Liu, H. Zheng, Z. Yan, Change of the solar radiation and its causes in the Haihe River Basin and surrounding areas, J. Geogr. Sci. 20 (2010), 569-580.
  • [19] B. Aksoy, Solar radiation over Turkey and its analysis. International Journal of Remote Sensing, 32:21 (2011), 6261-6272.
  • [20] Z. Zhou, L. Wang, A. Lin, M. Zhang, Z. Niu, Innovative trend analysis of solar radiation in China during 1962–2015. Renewable energy, 119 (2018), 675-689.
  • [21] D. R. Helsel, R. M. Hirsch, Statistical methods in water resources. Vol. 49. Elsevier, 1992.
  • [22] H. Von Storch, A. Navarra, Applications of Statistical Techniques. 1995.
  • [23] J. D. Salas, Applied modeling of hydrologic time series. Water Resources Publication, 1980.
  • [24] T. Mohsin, W. A. Gough, Trend analysis of long-term temperature time series in the Greater Toronto Area (GTA). Theoretical and Applied Climatology, 101 (3-4), (2010), 311-327.
  • [25] M. Gocic, S. Trajkovic, Analysis of precipitation and drought data in Serbia over the period 1980–2010. Journal of Hydrology, 494 (2013)., 32-42.
  • [26] H.B. Mann, Nonparametric tests against trend. Econometrica, 13 (1945), 245-259.
  • [27] M. G. Kendall, Rank correlation methods. 1948.
  • [28] S. Yue, C. Y. Wang, Applicability of prewhitening to eliminate the influence of serial correlation on the Mann‐Kendall test. Water resources research, 38(6), (2002), 4-1.
  • [29] P. K. Sen, Estimates of the regression coefficient based on Kendall's tau. Journal of the American statistical association, 63:324 (1968), 1379-1389.
Year 2020, Volume: 5 Issue: 3, 227 - 238, 25.12.2020
https://doi.org/10.46578/humder.828025

Abstract

References

  • [1] C. Beer, M. Reichstein, E. Tomelleri, P. Ciais, M. Jung, N.C. Carvalhais, Rodenbeck, M.A. Arain, D. Baldocchi, G.B. Bonan, Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate, Science 329 (2010) 834-838.
  • [2] M.D. Islam, I. Kubo, M. Ohadi, A.A. Alili, Measurement of solar energy radiation in Abu Dhabi, UAE, Appl. Energy 86 (2009) 511-515.
  • [3] T. Khatib, A. Mohamed, K. Sopian, A review of solar energy modeling techniques, Renew. Sustain. Energy Rev. 16 (2012) 2864-2869.
  • [4] H.C. Power, Trends in solar radiation over Germany and an assessment of the role of aerosols and sunshine duration, Theor. Appl. Climatol. 76 (2003) 47-63.
  • [5] V. Russak, Changes in solar radiation and their influence on temperature trend in Estonia. J. Geophys. Res. 308 (2009) 49-50.
  • [6] V. Silva, R.A. Silva, E.P. Cavalcanti, C.C. Braga, P.V. Azevedo, V.P. Singh, E.R. Pereira, Trends in solar radiation in NCEP/NCAR database and measurements in northeastern Brazil, J. Sol. Energy 84 (2010) 1852-1862.
  • [7] S.T. Turnock, D.V. Spracklen, K.S. Carslaw, G.W. Mann, M.T. Woodhouse, P.M. Forster, J. Haywood, C.E. Johnson, M. Dalvi, N. Bellouin, Modelled and observed changes in aerosols and surface solar radiation over Europe between 1960 and 2009. Atmos. Chem. Phys. 15 (2015) 13457-13513.
  • [8] T. Caloiero, R. Coscarelli, E. Ferrari, M. Mancini, Trend detection of annual and seasonal rainfall in Calabria (Southern Italy), Int. J. Climatol. 31 (2011) 44-56.
  • [9] H. Tabari, S. Marofi, M. Ahmadi, Long-term variations of water quality parameters in the Maroon River, Iran. Environ. Mon. Assess 177 (2011) 273.
  • [10] R.K. Chowdhury, S. Beecham, J. Boland, J Piantadosi, Understanding South Australian rainfall trends and step changes, Int. J. Climatol. 35 (2015) 348-360.
  • [11] E. Eris, and N. Agiralioglu, Homogeneity and trend analysis of hydrometeorological data of the Eastern Black Sea Region, Turkey. Journal of Water Resource and Protection, 4 (2012) 92-105.
  • [12] K. Yenigün, V. Gümüş, H. Bulut, Trends in streamflow of the Euphrates basin, Turkey. In: Proceedings of the Institution of Civil Engineers-Water Management. 161:4 (2008) 189-198.
  • [13] V. Gumus, Spatio‐temporal precipitation and temperature trend analysis of the Seyhan–Ceyhan River Basins, Turkey. Meteorological Applications, 26:3 (2019), 369-384.
  • [14] Z. Şen, Innovative trend analysis methodology, J. Hydrol. Eng. 17 (2012) 1042-1046.
  • [15] M. Ay, O. Kisi, Investigation of trend analysis of monthly total precipitation by an innovative method. Theor. Appl. Climatol. 120 (2015), 617-629.
  • [16] O. Kisi, An innovative method for trend analysis of monthly pan evaporations. Jour. Hydrol. 527 (2015) 1123-1129.
  • [17] H. Wu, H. Qian, Innovative trend analysis of annual and seasonal rainfall and extreme values in Shaanxi, China, since the 1950s, Int. J. Climatol. 37:5 (2017), 2582-2592.
  • [18] C. Liu, X. Liu, H. Zheng, Z. Yan, Change of the solar radiation and its causes in the Haihe River Basin and surrounding areas, J. Geogr. Sci. 20 (2010), 569-580.
  • [19] B. Aksoy, Solar radiation over Turkey and its analysis. International Journal of Remote Sensing, 32:21 (2011), 6261-6272.
  • [20] Z. Zhou, L. Wang, A. Lin, M. Zhang, Z. Niu, Innovative trend analysis of solar radiation in China during 1962–2015. Renewable energy, 119 (2018), 675-689.
  • [21] D. R. Helsel, R. M. Hirsch, Statistical methods in water resources. Vol. 49. Elsevier, 1992.
  • [22] H. Von Storch, A. Navarra, Applications of Statistical Techniques. 1995.
  • [23] J. D. Salas, Applied modeling of hydrologic time series. Water Resources Publication, 1980.
  • [24] T. Mohsin, W. A. Gough, Trend analysis of long-term temperature time series in the Greater Toronto Area (GTA). Theoretical and Applied Climatology, 101 (3-4), (2010), 311-327.
  • [25] M. Gocic, S. Trajkovic, Analysis of precipitation and drought data in Serbia over the period 1980–2010. Journal of Hydrology, 494 (2013)., 32-42.
  • [26] H.B. Mann, Nonparametric tests against trend. Econometrica, 13 (1945), 245-259.
  • [27] M. G. Kendall, Rank correlation methods. 1948.
  • [28] S. Yue, C. Y. Wang, Applicability of prewhitening to eliminate the influence of serial correlation on the Mann‐Kendall test. Water resources research, 38(6), (2002), 4-1.
  • [29] P. K. Sen, Estimates of the regression coefficient based on Kendall's tau. Journal of the American statistical association, 63:324 (1968), 1379-1389.
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Research Articles
Authors

Veysel Gümüş 0000-0003-2321-9526

Oğuz Şimşek 0000-0001-6324-0229

Publication Date December 25, 2020
Submission Date November 19, 2020
Acceptance Date November 30, 2020
Published in Issue Year 2020 Volume: 5 Issue: 3

Cite

APA Gümüş, V., & Şimşek, O. (2020). Şanlıurfa İstasyonunun Aylık Ortalama Güneşlenme Şiddetinin Farklı Yöntemler ile Trend Analizi. Harran Üniversitesi Mühendislik Dergisi, 5(3), 227-238. https://doi.org/10.46578/humder.828025

Cited By