RECENT ADVANCES IN PLANNING FARM OPERATIONS THROUGH OPTIMIZATION MODELS
Year 2023,
Volume: 41 Issue: Tarım Özel Sayısı, 124 - 144, 31.07.2023
Yunus Yıldırım
,
Aydın Ulucan
,
Kazım Barış Atıcı
Abstract
Operations Research applications in the agriculture sector have been a research area of high interest for over 50 years. Due to food security and sustainability concerns in the world, a lot of attention has been given to this area by OR researchers and practitioners recently. From distribution planning to performance evaluation, a variety of approaches and methods have been applied to a broad range of agricultural problems. Therefore, many review papers have been published from different points of view to serve both general and specific academic purposes. In this work, we present a review of the optimization approaches for the planning of farming operations which aims to optimize agricultural production systems. We use Scopus database to find relevant studies in three decision areas: crop planning, harvest planning and machinery management. Our review covers 54 papers published between 2002-2022.
References
- Ahodo, K., Oglethorpe, D., Hicks, H. L., & Freckleton R. P. (2019). Estimating the farm-level economic costs of spring cropping to manage Alopecurus myosuroides (blackgrass) in UK agriculture. The Journal of Agricultural Science, 157, 318–332. https://doi.org/10.1017/S0021859619000650
- Ahumada, O., Villalobos, J.R. (2009). Application of planning models in the agri-food supply chain: A review. European Journal of Operational Research, 196 (1), 1-20. https://doi.org/10.1016/j.ejor.2008.02.014
- Albornoz, V. M., Véliz, M. I., Ortega, R., & Ortíz-Araya V. (2019). Integrated versus hierarchical approach for zone delineation and crop planning under uncertainty. Annals of Operations Research, 286, 617–634. https://doi.org/10.1007/s10479-019-03198-y
- Albornoz, V. M., Zamora, G.E. (2020). Decomposition-based heuristic for the zoning and crop planning problem with adjacency constraints. TOP, 29, 248–265. https://doi.org/10.1007/s11750-020-00580-z
- Albornoz, V. M., Araneda, L. C., & Ortega, R. (2021). Planning and scheduling of selective harvest with management zones delineation. Annals of Operations Research, 316(2), 873-890. https://doi.org/10.1007/s10479-021-04112-1
- Alfandari, L., Plateau, A., & Schepler, X. (2015). A branch-and-price-and-cut approach for sustainable crop rotation planning. European Journal of Operational Research, 241 (3), 872-879. https://doi.org/10.1016/j.ejor.2014.09.066
- Amaefule, D. O., Oluka, I. S., & Nwuba, U. E. I. (2018). Tillage Machinery Selection Model for Combined Noncontiguous Farms. UNIZIK Journal of Engineering and Applied Sciences, 14, 13-12. https://journals.unizik.edu.ng/index.php/ujeas/article/view/1689
- Amiama, C., Cascudo, N., Carpente, L., & Cerdeira-Pen, A. (2015). A decision tool for maize silage harvest operations. Biosystems Engineering, 134, 94–104. https://doi.org/10.1016/j.biosystemseng.2015.04.004
- Annetts, J., Audsley, E. (2002). Multiple objective linear programming for environmental farm planning. The Journal of the Operational Research Society, 53 (9), 933-943. http://www.jstor.org/stable/822837
- Arnaout, J-P.M., Maatouk, M. (2010). Optimization of quality and operational costs through improved scheduling of harvest operations. International Transactions in Operational Research, 17(5), 595–605. https://doi.org/10.1111/j.1475-3995.2009.00740.x
- Avanzini, E., Cawley, A., Vera, J., & Maturana, S. (2021). Comparing an expected value with a multistage stochastic optimization approach for the case of wine grape harvesting operations with quality degradation. International Transactions in Operational Research, 1-31. https://doi.org/10.1111/itor.12982
Bakhtiari, A., Navid, H., Mehri, J., & Bochtis, D. (2012). Optimal route planning of agricultural field operations using ant colony optimization. CIGR Journal, 13 (4), 1-10. https://cigrjournal.org/index.php/Ejounral/article/view/1939
- Behzadi, G., O’Sullivan, M.J., Olsen, T.L., & Zhang, A. (2018). Agribusiness supply chain risk management: a review of quantitative decision models. Omega, 79, 21-42. https://doi.org/10.1016/j.omega.2017.07.005
Bhatia, M., Rana, A. (2020). A mathematical approach to optimize crop allocation – a linear programming model. International Journal of Design & Nature and Ecodynamics, 15 (2), 245-252. https://doi.org/10.18280/ijdne.150215
- Biswas, A., Pal, B. B. (2005). Application of fuzzy goal programming technique to land use planning in agricultural system. Omega-international Journal of Management Science, 33, 391-398. https://doi.org/10.1016/j.omega.2004.07.003
- Bochtis, D. D., Sørensen, C. G. C., & Busato, P. (2014). Advances in agricultural machinery management: A review. Biosystems Engineering, 126, 69–81. https://doi.org/10.1016/j.biosystemseng.2014.07.012
Bochtis, D. D., Sorensen, C. A. G., & Kateris, D. (2019). Operations Management in Agriculture. Elsevier Science. https://doi.org/10.1016/C2015-0-06290-6
- Bochtis, D. D., Vougioukas, S. G., (2008). Minimising the non-working distance travelled by machines operating in a headland field pattern. Biosystems Engineering, 101, 1–12. https://doi.org/10.1016/j.biosystemseng.2008.06.008
- Bohle, C., Maturana, S., & Vera, J. (2010). A robust optimization approach to wine grape harvesting scheduling. European Journal of Operational Research, 200 (1), 245-252. https://doi.org/10.1016/j.ejor.2008.12.003
- Camarena, E. A., Gracia, C., & Cabrera Sixto, J. M. (2004). A mixed integer linear programming machinery selection model for multifarm systems. Biosystems Engineering, 87(2), 145-154. https://doi.org/10.1016/j.biosystemseng.2003.10.003
- Capitanescu, F., Marvuglia, A., Gutiérrez, T. N., & Benetto, E. (2017). Multi-stage farm management optimization under environmental and crop rotation constraints. Journal of Cleaner Production, 147, 197-205. https://doi.org/10.1016/j.jclepro.2017.01.076
- Cortignani, R., Severini, S. (2012). A constrained optimization model based on generalized maximum entropy to assess the impact of reforming agricultural policy on the sustainability of irrigated areas. Agricultural Economics, 43(6), 621-633. https://doi.org/10.1111/j.1574-0862.2012.00608.x
- Dury, J., Schaller, N., & Garcia, F. (2012). Models to support cropping plan and crop rotation decisions. A review. Agronomy for Sustainable Development, 32, 567–580. https://doi.org/10.1007/s13593-011-0037-x
Edwards, G., Sørensen, C. G., Bochtis, D. D., & Munkholm, L. J. (2015). Optimised schedules for sequential agricultural operations using a Tabu Search method. Computers and Electronics in Agriculture, 117, 102-113. https://doi.org/10.1016/j.compag.2015.07.007
- Ekman, S. (2000). IT information technology: Tillage system selection: A mathematical programming model incorporating weather variability. Journal of Agricultural Engineering Research, 77(3), 267-276. https://doi.org/10.1006/jaer.2000.0602
- Fasakhodi, A. A., Nouri, S. H., & Amini, M. (2010). Water Resources Sustainability and Optimal Cropping Pattern in Farming Systems; A Multi-Objective Fractional Goal Programming Approach. Water Resources Management, 24, 4639–4657. https://doi.org/10.1007/s11269-010-9683-z
- Ferrer, J.-C., Mac Cawley, A., Maturana, S., Toloza, S., & Vera, J. (2008). An optimization approach for scheduling wine grape harvest operations. International Journal of Production Economics, 112(2), 985-999. https://doi.org/10.1016/j.ijpe.2007.05.020
- Filippi, C., Mansini, R., & Stevanato, E. (2017). Mixed integer linear programming models for optimal crop selection. Computers & Operations Research, 81, 26-39. https://doi.org/10.1016/j.cor.2016.12.004
- Galán-Martín, A., Pozo, C., Guillén-Gosálbez, G., Vallejo A. A., & Esteller L. J. (2015). Multi-stage linear programming model for optimizing cropping plan decisions under the new Common Agricultural Policy. Land Use Policy, 48, 515-524. https://doi.org/10.1016/j.landusepol.2015.06.022
- Glen, J. J. (1987). Mathematical models in farm planning: a survey. Operations Research, 35 (5), 641-666. http://www.jstor.org/stable/171218
- Gómez-Lagos, J. E., González-Araya, M. C., Soto-Silva, W. E., & Rivera-Moraga, M. M. (2021). Optimizing tactical harvest planning for multiple fruit orchards using a metaheuristic modeling approach. European Journal of Operational Research, 290(1), 297-312. https://doi.org/10.1016/j.ejor.2020.08.015
- Guan, S., Shikanai, T., Nakamura M., & Fukami, K. (2017). Mathematical Model and Solution for Land-Use Crop Planning with Cooperative Work. 6th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI), Hamamatsu, Japan, 903-908. https://doi.org/10.1109/IIAI-AAI.2017.110
- Günder, M., Piatkowski, N., Von Rueden, L., Sifa, R., & Bauckhage, C. (2021). Towards Intelligent Food Waste Prevention: An Approach Using Scalable and Flexible Harvest Schedule Optimization with Evolutionary Algorithms. IEEE Access, vol. 9, pp. 169044-169055. https://doi.org/10.1109/ACCESS.2021.3137709
- Hardaker, J. B., Pandey, S., & Patten, L.H. (1991). Farm planning under uncertainty: a review of alternative programming models. Review of Marketing and Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 59(01), pages 1-14. http://dx.doi.org/10.22004/ag.econ.12460
- Harel, B., Edan, Y., & Perlman, Y. (2022). Optimization Model for Selective Harvest Planning Performed by Humans and Robots. Applied Sciences, 12(5), 2507. https://doi.org/10.3390/app12052507
- Hayashi, K. (2000). Multicriteria analysis for agricultural resource management: a critical survey and future perspectives. European Journal of Operational Research, 122 (2), 486-500. https://doi.org/10.1016/S0377-2217(99)00249-0
- He, P., Li, J., Wang, X. (2018). Wheat harvest schedule model for agricultural machinery cooperatives considering fragmental farmlands. Computers and Electronics in Agriculture, 14, 226–234. https://doi.org/10.1016/j.compag.2017.12.042
- Heidari, M. D. Turner, I, Ardestani-Jaafari, A., & Pelletier, N. (2021). Operations research for environmental assessment of crop-livestock production systems. Agricultural Systems, 193, 103208. https://doi.org/10.1016/j.agsy.2021.103208
- Herrera-Cáceres, C., Pérez-Galarce, F., Álvarez-Miranda, E., & Candia-Véjar, A. (2017). Optimization of the harvest planning in the olive oil production: A case study in Chile. Computers and Electronics in Agriculture, 141, 147-159. https://doi.org/10.1016/j.compag.2017.07.017
- Huh, W. T., & Lall, U. (2013). Optimal crop choice, irrigation allocation, and the impact of contract farming. Production and Operations Management, 22(5), 1126– 1143. https://doi.org/10.1111/poms.12007
Intergovernmental Panel on Climate Change (IPCC) (2014). Climate Change 2014: Mitigation of Climate Change. Retrieved from, Cambridge, United Kingdom and New York, NY, USA. https://www.ipcc.ch/report/ar5/wg3/
- Jami, N., Leithäuser, N., Weiß, C. (2021). Allocating Small Transporters to Large Jobs. Algorithms, 15, 60. https://doi.org/10.3390/a15020060
Jena, S. D., Poggi, M. (2013). Harvest planning in the Brazilian sugar cane industry via mixed integer programming. European Journal of Operational Research, 230(2), 374-384. https://doi.org/10.1016/j.ejor.2013.04.011
- Kay, R. D., Edwards, W. M., & Duffy, P. A. (2008). Farm management. Published by McGraw-Hill. Sixth edition.
Leteinturier, B., Herman, J., Longueville, F.D., Quintin, L., & Oger, R. (2006). Adaptation of a crop sequence indicator based on a land parcel management system. Agriculture, Ecosystems & Environment, 112(4), 324–334. https://doi.org/10.1016/j.agee.2005.07.011
- López-Baldovin M.J., Gutierrez-Martin C., & Berbel J. (2006). Multicriteria and multiperiod programming for scenario analysis in Guadalquivir River irrigated farming. Journal of the Operational Research Society, 57, 499–509. https://doi.org/10.1057/palgrave.jors.2602029
- Lowe, T. J., Preckel, P.V. (2004). Decision technologies for agribusiness problems: A brief review of selected literature and a call for research. Manufacturing & Service Operations Management, 6 (3), 201-208. https://doi.org/10.1287/msom.1040.0051
- Lucas, M. T., Chhajed, D. (2004). Applications of location analysis in agriculture: A survey. The Journal of the Operational Research Society, 55 (6), 561-578. http://www.jstor.org/stable/4101960
Mohamed, M. A., Kheiry, A. N., Rahama, A. E., & Alameen, A. A. (2017). Optimization model for machinery selection of multi-crop farms in elsuki agricultural scheme. Turkish Journal of Agriculture - Food Science and Technology (TURJAF), 5 (7), 739. https://doi.org/10.24925/turjaf.v5i7.739-744.1144
- Montazar, A. A. (2011). decision tool for optimal irrigated crop planning and water resources sustainability. Journal of Global Optimization, 55, 641–654. https://doi.org/10.1007/s10898-011-9803-1
- Nematollahi, M., Tajbakhsh, A. (2020). Past, present, and prospective themes of sustainable agricultural supply chains: a content analysis. Journal of Cleaner Production, 271, 122201. https://doi.org/10.1016/j.jclepro.2020.122201
- Pakawanich, P., Udomsakdigool, A., Khompatraporn, C. (2021). Crop production scheduling for revenue inequality reduction among smallholder farmers in an agricultural cooperative. Journal of the Operational Research Society, 73 (12), 2614-2625. https://doi.org/10.1080/01605682.2021.2004946
Pal, B. B., Chakraborti, D., & Biswas, P. (2009). A genetic algorithm based hybrid goal programming approach to land allocation problem for optimal cropping plan in agricultural system. International Conference on Industrial and Information Systems (ICIIS), Peradeniya, Sri Lanka,. 181-186. https://doi.org/10.1109/ICIINFS.2009.5429867
- Pal, B. B., Kumar, M., & Sen, S. (2010). A priority based interval-valued Goal Programming approach for land utilization planning in agricultural system: A case study. Second International conference on Computing, Communication and Networking Technologies, Karur, India, 1-9. https://doi.org/10.1109/ICCCNT.2010.5591814
- Rădulescu, M., Rădulescu, C. Z., & Zbăganu, G. (2011). A portfolio theory approach to crop planning under environmental constraints. Annals of Operations Research, 219, 243–264. https://doi.org/10.1007/s10479-011-0902-7
- Rodias, E., Berruto, R., Busato, P., Bochtis, D., Sørensen, C., & Zhou, K. (2017). Energy Savings from Optimised In-Field Route Planning for Agricultural Machinery. Sustainability, 9(11), 1956. https://doi.org/10.3390/su9111956
Santos L. M. R., Munari P., Costa A. M., & Santos R. H. S. (2015). A branch-price-and-cut method for the vegetable crop rotation scheduling problem with minimal plot sizes. European Journal of Operational Research, 245, pp. 581-590. https://doi.org/10.1016/j.ejor.2015.03.035
- Savin, L., Matic-Kekic, S., Dedovic, N., Simikic, M., & Tomic, M. (2014). Profit maximisation algorithm including the loss of yield due to un certain weather events during harvest. Biosystems Engineering, 123, 56-67. https://doi.org/10.1016/j.biosystemseng.2014.05.002
- Sethanan, K., Neungmatcha, W. (2016). Multi-objective particle swarm optimization for mechanical harvester route planning of sugarcane field operations. European Journal of Operational Research, 252(3), 969–984. https://doi.org/10.1016/j.ejor.2016.01.043
- Søgaard, H. T., Sørensen, C. G., 2004. A model for optimal selection of machinery sizes within the farm machinery system. Biosystems Engineering, 89 (1), 13–28. https://doi.org/10.1016/j.biosystemseng.2004.05.004
Solano, N. E. C., Llinás, G. A. G., & Montoya-Torres, J. R. (2022). Operational model for minimizing costs in agricultural production systems. Computers and Electronics in Agriculture, 197. 106932. https://doi.org/10.1016/j.compag.2022.106932
- Sørensen, C. G., Halberg, N., Oudshoorn, F. W., Petersen, B. M., & Dalgaard, R. (2014). Energy inputs and GHG emissions of tillage systems. Biosystems Engineering, 120, 2-14. https://doi.org/10.1016/j.biosystemseng.2014.01.004
- Telles L. A. D. A., Arroyo J. E. C., Binoti D. H. B., Lorenzon A. S., Santos A. R. D., Domingues G. F., Resende R. T., Marcatti G. E., Gonzales D. G. E., Castro N. L. M. D., Mota P. H. S., Oliveira B. D. A., & Silva M. L. D. (2021). When, where and what cultivate: An optimization model for rural property planning. Journal of Cleaner Production, 290, 125741. https://doi.org/10.1016/j.jclepro.2020.125741
- Turner, A. P., Sama, M. P., McNeill, L. S., Dvorak, J. S., Mark, T., & Montross, M. D. (2019). A discrete event simulation model for analysis of farm scale grain transportation systems. Computers and Electronics in Agriculture, 167, 105040. https://doi.org/10.1016/j.compag.2019.105040
- Huh W. T., Lall U. (2013). Optimal crop choice, irrigation allocation, and the impact of contract farming. Production and Operations Management, 22, 1126–1143. https://doi.org/10.1111/poms.12007
- Wang Y., Huang G. Q. (2022a). A two-step framework for dispatching shared agricultural machinery with time window. Computer and Electronics in Agriculture 192, 106607. https://doi.org/10.1016/j.compag.2021.106607
- Wang Y., Huang G. Q. (2022b). Harvester scheduling joint with operator assignment. Computer and Electronics in Agriculture, 202, 107354.
- Wishon, C., Villalobos, J.R., Mason, N., Flores, H., & Lujan, G. (2015). Use of MIP for planning temporary immigrant farm labor force. International Journal of Production Economics, 170, 25-33. https://doi.org/10.1016/j.ijpe.2015.09.004
- Wijnands, E. (1999). Crop rotation in organic farming: theory and practice. In: Designing and testing crop rotations for organic farming. Proceedings from an international workshop. Danish Research Centre for Organic Farming, 21–35. https://orgprints.org/id/eprint/3056/
- Varas, M., Basso, F., Maturana, S., Osorio, D., & Pezoa, R. (2020). A multi-objective approach for supporting wine grape harvest operations. Computers & Industrial Engineering, 145, 106497. https://doi.org/10.1016/j.cie.2020.106497
- Verlinden, O. A. B., Van Oudheusden D. (2009). Infield logistics planning for crop-harvesting operations. Engineering Optimization 41, (2), 183-197. https://doi.org/10.1080/03052150802406540
- Zhang, W., Zhao, B., Zhou, L., Wang, J., Qiu, C., Niu, K., & Wang, F (2022). Harvester Maintenance Resource Scheduling Optimization, Based on the Combine Harvester Operation and Maintenance Platform. Agriculture, 12, 1433. https://doi.org/10.3390/agriculture12091433
Çiftlik Operasyonlarında Kullanılan Optimizasyon Modellerindeki Son Gelişmeler
Year 2023,
Volume: 41 Issue: Tarım Özel Sayısı, 124 - 144, 31.07.2023
Yunus Yıldırım
,
Aydın Ulucan
,
Kazım Barış Atıcı
Abstract
Tarım sektöründe yöneylem araştırması tekniklerinin uygulanması, 50 yılı aşkın bir süredir yüksek ilgi gören bir araştırma alanı olmuştur. Dünyada gıda güvenliği ve sürdürülebilirlik endişeleri nedeniyle, son zamanlarda yöneylem araştırmacıları ve uygulayıcıları tarafından bu alana daha çok dikkat çekilmektedir. Dağıtım planlamasından performans değerlendirmesine kadar, çok çeşitli tarımsal problemlere uygulanan birçok farklı yaklaşım ve yöntem görülmektedir. Bu nedenle, hem genel hem de özel kapsamlarda akademik amaçlara hizmet edecek farklı bakış açılarıyla hazırlanmış birçok derleme makalesi yayınlanmıştır. Bu çalışmada, özellikle tarımsal üretim sistemlerinin iyileştirilmesini hedefleyen çiftlik operasyonlarının planlanması için geliştirilen optimizasyon yaklaşımlarının bir derlemesi sunulmaktadır. Mahsul planlama, hasat planlama ve makine yönetiminden oluşan üç karar alanındaki ilgili çalışmaları bulmak için Scopus veritabanı kullanılmıştır. Derlememiz 2002-2022 yılları arasında yayınlanmış toplam 54 makaleden oluşmaktadır.
References
- Ahodo, K., Oglethorpe, D., Hicks, H. L., & Freckleton R. P. (2019). Estimating the farm-level economic costs of spring cropping to manage Alopecurus myosuroides (blackgrass) in UK agriculture. The Journal of Agricultural Science, 157, 318–332. https://doi.org/10.1017/S0021859619000650
- Ahumada, O., Villalobos, J.R. (2009). Application of planning models in the agri-food supply chain: A review. European Journal of Operational Research, 196 (1), 1-20. https://doi.org/10.1016/j.ejor.2008.02.014
- Albornoz, V. M., Véliz, M. I., Ortega, R., & Ortíz-Araya V. (2019). Integrated versus hierarchical approach for zone delineation and crop planning under uncertainty. Annals of Operations Research, 286, 617–634. https://doi.org/10.1007/s10479-019-03198-y
- Albornoz, V. M., Zamora, G.E. (2020). Decomposition-based heuristic for the zoning and crop planning problem with adjacency constraints. TOP, 29, 248–265. https://doi.org/10.1007/s11750-020-00580-z
- Albornoz, V. M., Araneda, L. C., & Ortega, R. (2021). Planning and scheduling of selective harvest with management zones delineation. Annals of Operations Research, 316(2), 873-890. https://doi.org/10.1007/s10479-021-04112-1
- Alfandari, L., Plateau, A., & Schepler, X. (2015). A branch-and-price-and-cut approach for sustainable crop rotation planning. European Journal of Operational Research, 241 (3), 872-879. https://doi.org/10.1016/j.ejor.2014.09.066
- Amaefule, D. O., Oluka, I. S., & Nwuba, U. E. I. (2018). Tillage Machinery Selection Model for Combined Noncontiguous Farms. UNIZIK Journal of Engineering and Applied Sciences, 14, 13-12. https://journals.unizik.edu.ng/index.php/ujeas/article/view/1689
- Amiama, C., Cascudo, N., Carpente, L., & Cerdeira-Pen, A. (2015). A decision tool for maize silage harvest operations. Biosystems Engineering, 134, 94–104. https://doi.org/10.1016/j.biosystemseng.2015.04.004
- Annetts, J., Audsley, E. (2002). Multiple objective linear programming for environmental farm planning. The Journal of the Operational Research Society, 53 (9), 933-943. http://www.jstor.org/stable/822837
- Arnaout, J-P.M., Maatouk, M. (2010). Optimization of quality and operational costs through improved scheduling of harvest operations. International Transactions in Operational Research, 17(5), 595–605. https://doi.org/10.1111/j.1475-3995.2009.00740.x
- Avanzini, E., Cawley, A., Vera, J., & Maturana, S. (2021). Comparing an expected value with a multistage stochastic optimization approach for the case of wine grape harvesting operations with quality degradation. International Transactions in Operational Research, 1-31. https://doi.org/10.1111/itor.12982
Bakhtiari, A., Navid, H., Mehri, J., & Bochtis, D. (2012). Optimal route planning of agricultural field operations using ant colony optimization. CIGR Journal, 13 (4), 1-10. https://cigrjournal.org/index.php/Ejounral/article/view/1939
- Behzadi, G., O’Sullivan, M.J., Olsen, T.L., & Zhang, A. (2018). Agribusiness supply chain risk management: a review of quantitative decision models. Omega, 79, 21-42. https://doi.org/10.1016/j.omega.2017.07.005
Bhatia, M., Rana, A. (2020). A mathematical approach to optimize crop allocation – a linear programming model. International Journal of Design & Nature and Ecodynamics, 15 (2), 245-252. https://doi.org/10.18280/ijdne.150215
- Biswas, A., Pal, B. B. (2005). Application of fuzzy goal programming technique to land use planning in agricultural system. Omega-international Journal of Management Science, 33, 391-398. https://doi.org/10.1016/j.omega.2004.07.003
- Bochtis, D. D., Sørensen, C. G. C., & Busato, P. (2014). Advances in agricultural machinery management: A review. Biosystems Engineering, 126, 69–81. https://doi.org/10.1016/j.biosystemseng.2014.07.012
Bochtis, D. D., Sorensen, C. A. G., & Kateris, D. (2019). Operations Management in Agriculture. Elsevier Science. https://doi.org/10.1016/C2015-0-06290-6
- Bochtis, D. D., Vougioukas, S. G., (2008). Minimising the non-working distance travelled by machines operating in a headland field pattern. Biosystems Engineering, 101, 1–12. https://doi.org/10.1016/j.biosystemseng.2008.06.008
- Bohle, C., Maturana, S., & Vera, J. (2010). A robust optimization approach to wine grape harvesting scheduling. European Journal of Operational Research, 200 (1), 245-252. https://doi.org/10.1016/j.ejor.2008.12.003
- Camarena, E. A., Gracia, C., & Cabrera Sixto, J. M. (2004). A mixed integer linear programming machinery selection model for multifarm systems. Biosystems Engineering, 87(2), 145-154. https://doi.org/10.1016/j.biosystemseng.2003.10.003
- Capitanescu, F., Marvuglia, A., Gutiérrez, T. N., & Benetto, E. (2017). Multi-stage farm management optimization under environmental and crop rotation constraints. Journal of Cleaner Production, 147, 197-205. https://doi.org/10.1016/j.jclepro.2017.01.076
- Cortignani, R., Severini, S. (2012). A constrained optimization model based on generalized maximum entropy to assess the impact of reforming agricultural policy on the sustainability of irrigated areas. Agricultural Economics, 43(6), 621-633. https://doi.org/10.1111/j.1574-0862.2012.00608.x
- Dury, J., Schaller, N., & Garcia, F. (2012). Models to support cropping plan and crop rotation decisions. A review. Agronomy for Sustainable Development, 32, 567–580. https://doi.org/10.1007/s13593-011-0037-x
Edwards, G., Sørensen, C. G., Bochtis, D. D., & Munkholm, L. J. (2015). Optimised schedules for sequential agricultural operations using a Tabu Search method. Computers and Electronics in Agriculture, 117, 102-113. https://doi.org/10.1016/j.compag.2015.07.007
- Ekman, S. (2000). IT information technology: Tillage system selection: A mathematical programming model incorporating weather variability. Journal of Agricultural Engineering Research, 77(3), 267-276. https://doi.org/10.1006/jaer.2000.0602
- Fasakhodi, A. A., Nouri, S. H., & Amini, M. (2010). Water Resources Sustainability and Optimal Cropping Pattern in Farming Systems; A Multi-Objective Fractional Goal Programming Approach. Water Resources Management, 24, 4639–4657. https://doi.org/10.1007/s11269-010-9683-z
- Ferrer, J.-C., Mac Cawley, A., Maturana, S., Toloza, S., & Vera, J. (2008). An optimization approach for scheduling wine grape harvest operations. International Journal of Production Economics, 112(2), 985-999. https://doi.org/10.1016/j.ijpe.2007.05.020
- Filippi, C., Mansini, R., & Stevanato, E. (2017). Mixed integer linear programming models for optimal crop selection. Computers & Operations Research, 81, 26-39. https://doi.org/10.1016/j.cor.2016.12.004
- Galán-Martín, A., Pozo, C., Guillén-Gosálbez, G., Vallejo A. A., & Esteller L. J. (2015). Multi-stage linear programming model for optimizing cropping plan decisions under the new Common Agricultural Policy. Land Use Policy, 48, 515-524. https://doi.org/10.1016/j.landusepol.2015.06.022
- Glen, J. J. (1987). Mathematical models in farm planning: a survey. Operations Research, 35 (5), 641-666. http://www.jstor.org/stable/171218
- Gómez-Lagos, J. E., González-Araya, M. C., Soto-Silva, W. E., & Rivera-Moraga, M. M. (2021). Optimizing tactical harvest planning for multiple fruit orchards using a metaheuristic modeling approach. European Journal of Operational Research, 290(1), 297-312. https://doi.org/10.1016/j.ejor.2020.08.015
- Guan, S., Shikanai, T., Nakamura M., & Fukami, K. (2017). Mathematical Model and Solution for Land-Use Crop Planning with Cooperative Work. 6th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI), Hamamatsu, Japan, 903-908. https://doi.org/10.1109/IIAI-AAI.2017.110
- Günder, M., Piatkowski, N., Von Rueden, L., Sifa, R., & Bauckhage, C. (2021). Towards Intelligent Food Waste Prevention: An Approach Using Scalable and Flexible Harvest Schedule Optimization with Evolutionary Algorithms. IEEE Access, vol. 9, pp. 169044-169055. https://doi.org/10.1109/ACCESS.2021.3137709
- Hardaker, J. B., Pandey, S., & Patten, L.H. (1991). Farm planning under uncertainty: a review of alternative programming models. Review of Marketing and Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 59(01), pages 1-14. http://dx.doi.org/10.22004/ag.econ.12460
- Harel, B., Edan, Y., & Perlman, Y. (2022). Optimization Model for Selective Harvest Planning Performed by Humans and Robots. Applied Sciences, 12(5), 2507. https://doi.org/10.3390/app12052507
- Hayashi, K. (2000). Multicriteria analysis for agricultural resource management: a critical survey and future perspectives. European Journal of Operational Research, 122 (2), 486-500. https://doi.org/10.1016/S0377-2217(99)00249-0
- He, P., Li, J., Wang, X. (2018). Wheat harvest schedule model for agricultural machinery cooperatives considering fragmental farmlands. Computers and Electronics in Agriculture, 14, 226–234. https://doi.org/10.1016/j.compag.2017.12.042
- Heidari, M. D. Turner, I, Ardestani-Jaafari, A., & Pelletier, N. (2021). Operations research for environmental assessment of crop-livestock production systems. Agricultural Systems, 193, 103208. https://doi.org/10.1016/j.agsy.2021.103208
- Herrera-Cáceres, C., Pérez-Galarce, F., Álvarez-Miranda, E., & Candia-Véjar, A. (2017). Optimization of the harvest planning in the olive oil production: A case study in Chile. Computers and Electronics in Agriculture, 141, 147-159. https://doi.org/10.1016/j.compag.2017.07.017
- Huh, W. T., & Lall, U. (2013). Optimal crop choice, irrigation allocation, and the impact of contract farming. Production and Operations Management, 22(5), 1126– 1143. https://doi.org/10.1111/poms.12007
Intergovernmental Panel on Climate Change (IPCC) (2014). Climate Change 2014: Mitigation of Climate Change. Retrieved from, Cambridge, United Kingdom and New York, NY, USA. https://www.ipcc.ch/report/ar5/wg3/
- Jami, N., Leithäuser, N., Weiß, C. (2021). Allocating Small Transporters to Large Jobs. Algorithms, 15, 60. https://doi.org/10.3390/a15020060
Jena, S. D., Poggi, M. (2013). Harvest planning in the Brazilian sugar cane industry via mixed integer programming. European Journal of Operational Research, 230(2), 374-384. https://doi.org/10.1016/j.ejor.2013.04.011
- Kay, R. D., Edwards, W. M., & Duffy, P. A. (2008). Farm management. Published by McGraw-Hill. Sixth edition.
Leteinturier, B., Herman, J., Longueville, F.D., Quintin, L., & Oger, R. (2006). Adaptation of a crop sequence indicator based on a land parcel management system. Agriculture, Ecosystems & Environment, 112(4), 324–334. https://doi.org/10.1016/j.agee.2005.07.011
- López-Baldovin M.J., Gutierrez-Martin C., & Berbel J. (2006). Multicriteria and multiperiod programming for scenario analysis in Guadalquivir River irrigated farming. Journal of the Operational Research Society, 57, 499–509. https://doi.org/10.1057/palgrave.jors.2602029
- Lowe, T. J., Preckel, P.V. (2004). Decision technologies for agribusiness problems: A brief review of selected literature and a call for research. Manufacturing & Service Operations Management, 6 (3), 201-208. https://doi.org/10.1287/msom.1040.0051
- Lucas, M. T., Chhajed, D. (2004). Applications of location analysis in agriculture: A survey. The Journal of the Operational Research Society, 55 (6), 561-578. http://www.jstor.org/stable/4101960
Mohamed, M. A., Kheiry, A. N., Rahama, A. E., & Alameen, A. A. (2017). Optimization model for machinery selection of multi-crop farms in elsuki agricultural scheme. Turkish Journal of Agriculture - Food Science and Technology (TURJAF), 5 (7), 739. https://doi.org/10.24925/turjaf.v5i7.739-744.1144
- Montazar, A. A. (2011). decision tool for optimal irrigated crop planning and water resources sustainability. Journal of Global Optimization, 55, 641–654. https://doi.org/10.1007/s10898-011-9803-1
- Nematollahi, M., Tajbakhsh, A. (2020). Past, present, and prospective themes of sustainable agricultural supply chains: a content analysis. Journal of Cleaner Production, 271, 122201. https://doi.org/10.1016/j.jclepro.2020.122201
- Pakawanich, P., Udomsakdigool, A., Khompatraporn, C. (2021). Crop production scheduling for revenue inequality reduction among smallholder farmers in an agricultural cooperative. Journal of the Operational Research Society, 73 (12), 2614-2625. https://doi.org/10.1080/01605682.2021.2004946
Pal, B. B., Chakraborti, D., & Biswas, P. (2009). A genetic algorithm based hybrid goal programming approach to land allocation problem for optimal cropping plan in agricultural system. International Conference on Industrial and Information Systems (ICIIS), Peradeniya, Sri Lanka,. 181-186. https://doi.org/10.1109/ICIINFS.2009.5429867
- Pal, B. B., Kumar, M., & Sen, S. (2010). A priority based interval-valued Goal Programming approach for land utilization planning in agricultural system: A case study. Second International conference on Computing, Communication and Networking Technologies, Karur, India, 1-9. https://doi.org/10.1109/ICCCNT.2010.5591814
- Rădulescu, M., Rădulescu, C. Z., & Zbăganu, G. (2011). A portfolio theory approach to crop planning under environmental constraints. Annals of Operations Research, 219, 243–264. https://doi.org/10.1007/s10479-011-0902-7
- Rodias, E., Berruto, R., Busato, P., Bochtis, D., Sørensen, C., & Zhou, K. (2017). Energy Savings from Optimised In-Field Route Planning for Agricultural Machinery. Sustainability, 9(11), 1956. https://doi.org/10.3390/su9111956
Santos L. M. R., Munari P., Costa A. M., & Santos R. H. S. (2015). A branch-price-and-cut method for the vegetable crop rotation scheduling problem with minimal plot sizes. European Journal of Operational Research, 245, pp. 581-590. https://doi.org/10.1016/j.ejor.2015.03.035
- Savin, L., Matic-Kekic, S., Dedovic, N., Simikic, M., & Tomic, M. (2014). Profit maximisation algorithm including the loss of yield due to un certain weather events during harvest. Biosystems Engineering, 123, 56-67. https://doi.org/10.1016/j.biosystemseng.2014.05.002
- Sethanan, K., Neungmatcha, W. (2016). Multi-objective particle swarm optimization for mechanical harvester route planning of sugarcane field operations. European Journal of Operational Research, 252(3), 969–984. https://doi.org/10.1016/j.ejor.2016.01.043
- Søgaard, H. T., Sørensen, C. G., 2004. A model for optimal selection of machinery sizes within the farm machinery system. Biosystems Engineering, 89 (1), 13–28. https://doi.org/10.1016/j.biosystemseng.2004.05.004
Solano, N. E. C., Llinás, G. A. G., & Montoya-Torres, J. R. (2022). Operational model for minimizing costs in agricultural production systems. Computers and Electronics in Agriculture, 197. 106932. https://doi.org/10.1016/j.compag.2022.106932
- Sørensen, C. G., Halberg, N., Oudshoorn, F. W., Petersen, B. M., & Dalgaard, R. (2014). Energy inputs and GHG emissions of tillage systems. Biosystems Engineering, 120, 2-14. https://doi.org/10.1016/j.biosystemseng.2014.01.004
- Telles L. A. D. A., Arroyo J. E. C., Binoti D. H. B., Lorenzon A. S., Santos A. R. D., Domingues G. F., Resende R. T., Marcatti G. E., Gonzales D. G. E., Castro N. L. M. D., Mota P. H. S., Oliveira B. D. A., & Silva M. L. D. (2021). When, where and what cultivate: An optimization model for rural property planning. Journal of Cleaner Production, 290, 125741. https://doi.org/10.1016/j.jclepro.2020.125741
- Turner, A. P., Sama, M. P., McNeill, L. S., Dvorak, J. S., Mark, T., & Montross, M. D. (2019). A discrete event simulation model for analysis of farm scale grain transportation systems. Computers and Electronics in Agriculture, 167, 105040. https://doi.org/10.1016/j.compag.2019.105040
- Huh W. T., Lall U. (2013). Optimal crop choice, irrigation allocation, and the impact of contract farming. Production and Operations Management, 22, 1126–1143. https://doi.org/10.1111/poms.12007
- Wang Y., Huang G. Q. (2022a). A two-step framework for dispatching shared agricultural machinery with time window. Computer and Electronics in Agriculture 192, 106607. https://doi.org/10.1016/j.compag.2021.106607
- Wang Y., Huang G. Q. (2022b). Harvester scheduling joint with operator assignment. Computer and Electronics in Agriculture, 202, 107354.
- Wishon, C., Villalobos, J.R., Mason, N., Flores, H., & Lujan, G. (2015). Use of MIP for planning temporary immigrant farm labor force. International Journal of Production Economics, 170, 25-33. https://doi.org/10.1016/j.ijpe.2015.09.004
- Wijnands, E. (1999). Crop rotation in organic farming: theory and practice. In: Designing and testing crop rotations for organic farming. Proceedings from an international workshop. Danish Research Centre for Organic Farming, 21–35. https://orgprints.org/id/eprint/3056/
- Varas, M., Basso, F., Maturana, S., Osorio, D., & Pezoa, R. (2020). A multi-objective approach for supporting wine grape harvest operations. Computers & Industrial Engineering, 145, 106497. https://doi.org/10.1016/j.cie.2020.106497
- Verlinden, O. A. B., Van Oudheusden D. (2009). Infield logistics planning for crop-harvesting operations. Engineering Optimization 41, (2), 183-197. https://doi.org/10.1080/03052150802406540
- Zhang, W., Zhao, B., Zhou, L., Wang, J., Qiu, C., Niu, K., & Wang, F (2022). Harvester Maintenance Resource Scheduling Optimization, Based on the Combine Harvester Operation and Maintenance Platform. Agriculture, 12, 1433. https://doi.org/10.3390/agriculture12091433