Research Article
BibTex RIS Cite

Resveratrol Karbon Noktalarının SH-SY5Y İnsan Nöroblastoma Hücrelerinde 6-OHDA Kaynaklı Nöronal Hücre Ölümü Üzerinde Koruyucu Etkileri

Year 2023, , 508 - 512, 31.12.2023
https://doi.org/10.35440/hutfd.1318802

Abstract

Amaç: Bu çalışmada Resveratrol karbon noktalarının (RES-KN) 6-OHDA'nın SH-SY5Y insan nöroblastoma hücrelerininde neden olduğu oksidoinflamatuar stres ve apoptozdan koruma potansiyelini araştırmayı amaçladık.
Materyal ve Metod: SH-SY5Y hücreleri, in vitro PH modelini indüklemek için 24 saat boyunca 200 μM 6-OHDA'ya maruz bırakıldı. Hücrelere, 6-OHDA uygulamasından 30 dakika önce farklı konsantrasyonlarda RES KN (12.5, 25, and 50 µg/mL) uygulandı.
Bulgular: Özellikle, RES KN uygulaması sonucu 6-OHDA'nın neden olduğu hücre ölümü etkili bir şekilde engellendiğini ve SH-SY5Y hücrelerinde hücre canlılığı önemli ölçüde korunduğunu gözlemledik. RES-KN, SH-SY5Y hücrelerinde toplam antioksidanları güçlendirerek ve toplam oksidanları düşürerek 6-OHDA kaynaklı oksidatif hasarı önledi. Benzer şekilde, RES-KN, 6-OHDA kaynaklı inflamatuvar faktörlerin (TNF-a ve IL-1β) salınımını önemli ölçüde azalttı. Ayrıca RES-KN, kaspaz-3 mRNA ekspresyonunu baskılayarak 6-OHDA’nın neden olduğu apoptozu engelledi.
Sonuç: RES-KN’lar, oksido-inflamatuar ve apoptotik yanıtı modüle ederek SH-SY5Y hücrelerini 6-OHDA kaynaklı nörotoksisiteden kurtardı. Bu çalışma, RES’den sentezlenen KN’lerin PH tedavisinde umut verici terapötik potansiyele sahip olabileceğini düşündürmektedir.

References

  • 1. Juan CA, Pérez de la Lastra JM, Plou FJ, Pérez-Lebeña, E. The chemistry of reactive oxygen species (ROS) revisited: outli-ning their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. Int J Mol Sci, 2021;22(9): 42-63.
  • 2. Krunić M, Ristić B, Bošnjak M, Paunović V, Tovilović-Kovačević G, Zogović N, Trajković, V. Graphene quantum dot antioxi-dant and proautophagic actions protect SH-SY5Y neuroblas-toma cells from oxidative stress-mediated apoptotic death. Free Radic Biol Med, 2021;177:167-180.
  • 3. Lee K H, Cha M, Lee BH. Crosstalk between neuron and glial cells in oxidative injury and neuroprotection. Int J Mol Sci, 2021;22(24):15-32.
  • 4. Mouchaileh N, & Hughes AJ. Pharmacological management of Parkinson’s disease in older people. J Pharm Pract Res, 2020; 50(5): 445-454.
  • 5. Ganesan P, Ko HM, Kim IS, & Choi DK. Recent trends in the development of nanophytobioactive compounds and deli-very systems for their possible role in reducing oxidative stress in Parkinson’s disease models. Int J Nanomedicine, 2015; 29(10):57-72.
  • 6. Dos Santos MG, Schimith LE, André-Miral C, Muccillo-Baisch AL, Arbo BD, & Hort M A. Neuroprotective effects of resve-ratrol in in vivo and in vitro experimental models of Parkin-son’s disease: A systematic review. Neurotox Res, 2022; 40:319–345.
  • 7. Zhang LF, Yu XL, Ji M, Liu SY, Wu XL, Wang YJ, et al. Resverat-rol alleviates motor and cognitive deficits and neuropatho-logy in the A53T α-synuclein mouse model of Parkinson's di-sease. Food Funct, 2018; 9(12): 6414-6426.
  • 8. Berman AY, Motechin RA, Wiesenfeld MY, & Holz MK. The therapeutic potential of resveratrol: a review of clinical trials. NPJ Precis Oncol, 2017;1(1):35-46.
  • 9. Kim D, Yoo JM, Hwang H, Lee J, Lee SH, Yun SP, et al. Grap-hene quantum dots prevent α-synucleinopathy in Parkin-son’s disease. Nat Nanotechnol, 2018;13(9):812-818.
  • 10. Ben-Zichri S, Rajendran S, Bhunia SK, & Jelinek R. Resveratrol Carbon Dots Disrupt Mitochondrial Function in Cancer Cells. Bioconjug Chem, 2022;33(9):1663-1671.
  • 11. Xu X, Zhang K, Zhao L, Li C, Bu W, Shen Y, et al. Aspirin-based carbon dots, a good biocompatibility of material applied for bioimaging and anti-inflammation. ACS Appl Mater Interfa-ces, 2016; 8(48):32706-32716.
  • 12. Ferah Okkay I, Okkay U, Cicek B, Yilmaz A, Yesilyurt F, Mendil AS, et al. Neuroprotective effect of bromelain in 6-hydroxydopamine induced in vitro model of Parkinson’s di-sease. Mol Biol Rep, 2021:48;7711-7717.
  • 13. Tiong CX, Lu M, & Bian JS. Protective effect of hydrogen sulphide against 6‐OHDA‐induced cell injury in SH‐SY5Y cells involves PKC/PI3K/Akt pathway. Br J Pharmacol, 2010;161(2):467-480.
  • 14. Cicek B, & Danışman B. Cerium Oxide Nanoparticles Rescue Dopaminergic Neurons in Parkinson’s Disease Model of SH-SY5Y Cells via Modulating Nrf2 Signaling and Ameliorating Apoptotic Cell Death. ABC Research, 2023;5(2):284-290.
  • 15. Lee GH, Lee WJ, Hur J, Kim E, Lee HG., & Seo HG. Ginsenosi-de Re mitigates 6-hydroxydopamine-induced oxidative stress through upregulation of GPX4. Mol, 2020; 25(1):188-201.
  • 16. Raza C, & Anjum R. Parkinson's disease: Mechanisms, transla-tional models and management strategies. Life Sci, 2019; 226:77-90.
  • 17. Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stab-le ABTS radical cation. Clin Biochem, 2004;37(4): 277-285.
  • 18. Erel O. A new automated colorimetric method for measuring total oxidant status. Clin Biochem, 2005; 38(12):1103-1111.
  • 19. Leathem A, Simone M, Dennis JM, & Witting PK. The Cyclic Nitroxide TEMPOL Ameliorates Oxidative Stress but Not Inf-lammation in a Cell Model of Parkinson’s Disease. Antioxid, 2022:11(2);257-279.
  • 20. Kesh S, Kannan RR, Balakrishnan A. Naringenin alleviates 6-hydroxydopamine induced Parkinsonism in SHSY5Y cells and zebrafish model. Comp Biochem Physiol Part - C: Toxicol Pharmacol, 2021;239:1-7.
  • 21. Taylor JM, Main BS, & Crack PJ. Neuroinflammation and oxidative stress: co-conspirators in the pathology of Parkin-son’s disease. Neurochem Int, 2013; 62(5):803-819.
  • 22. Shao J, Liu X, Lian M, & Mao Y. Citronellol Prevents 6-OHDA-Induced Oxidative Stress, Mitochondrial Dysfunction, and Apoptosis in Parkinson Disease Model of SH-SY5Y Cells via Modulating ROS-NO, MAPK/ERK, and PI3K/Akt Signaling Pathways. Neurotox Res, 2022; 40:1-17.
  • 23. Adebayo OG, Asiwe JN, Ben‐Azu B, Aduema W, Onyeleonu I, Akpotu AE, et al. Ginkgo biloba protects striatal neurodege-neration and gut phagoinflammatory damage in rotenone‐induced mice model of Parkinson's disease: Role of executi-oner caspase‐3/Nrf2/ARE signaling. J Food Biochem, 2022; 46(9):1-18.
  • 24. Ahmad MH, Fatima M, Ali M, Rizvi MA, & Mondal AC. Narin-genin alleviates paraquat-induced dopaminergic neuronal loss in SH-SY5Y cells and a rat model of Parkinson's disease. Neuropharmacology, 2021;201:1-14.
  • 25. Chen CH, Hsu PC, Hsu SW, Hong KT, Chen KY, He JL, et al. Protective Effects of Jujubosides on 6-OHDA-Induced Neuro-toxicity in SH-SY5Y and SK-N-SH Cells. Mol, 2022; 27(13):4106-4123.

Protective Effects of Resveratrol Carbon Dots Against 6-OHDA-Induced Neurotoxicity in SH-SY5Y Cells

Year 2023, , 508 - 512, 31.12.2023
https://doi.org/10.35440/hutfd.1318802

Abstract

Background: We aimed to investigate the ability of resveratrol carbon dots (RES C-Dots) to protect SH-SY5Y cells from oxido-inflammatory stress and apoptosis caused by 6-hydroxydopamine (6-OHDA).
Materials and Methods: In vitro PD model was generated in SH-SY5Y cells by administering of 200 µM 6-OHDA for 24 hours. Different concentrations of RES C-Dots (12.5, 25, and 50 µg/mL) were applied to the cells 30 minutes before administration of 6-OHDA.
Results: We observed that application of RES C-Dots prevented cell death induced by 6-OHDA and main-tained cell viability. As expected, RES C-Dots prevented oxidative damage induced by 6-OHDA - by strengthening the total amount of antioxidants and lowering the total amount of oxidants in SH-SY5Y cells. Similarly, RES C-Dots markedly alleviated the secretion of inflammatory factors (TNF-α and IL-1β) promot-ed by 6-OHDA. Furthermore, RES C-Dots prevented apoptosis induced by 6-OHDA by suppressing caspase-3 mRNA expression level.
Conclusions: RES C-Dots rescued SH-SY5Y cells from 6-OHDA- induced damage by modulating the oxido-inflammatory and apoptotic response. This report indicates enounces that RES- synthesised C-Dots may have promising curative potential for PD.

References

  • 1. Juan CA, Pérez de la Lastra JM, Plou FJ, Pérez-Lebeña, E. The chemistry of reactive oxygen species (ROS) revisited: outli-ning their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. Int J Mol Sci, 2021;22(9): 42-63.
  • 2. Krunić M, Ristić B, Bošnjak M, Paunović V, Tovilović-Kovačević G, Zogović N, Trajković, V. Graphene quantum dot antioxi-dant and proautophagic actions protect SH-SY5Y neuroblas-toma cells from oxidative stress-mediated apoptotic death. Free Radic Biol Med, 2021;177:167-180.
  • 3. Lee K H, Cha M, Lee BH. Crosstalk between neuron and glial cells in oxidative injury and neuroprotection. Int J Mol Sci, 2021;22(24):15-32.
  • 4. Mouchaileh N, & Hughes AJ. Pharmacological management of Parkinson’s disease in older people. J Pharm Pract Res, 2020; 50(5): 445-454.
  • 5. Ganesan P, Ko HM, Kim IS, & Choi DK. Recent trends in the development of nanophytobioactive compounds and deli-very systems for their possible role in reducing oxidative stress in Parkinson’s disease models. Int J Nanomedicine, 2015; 29(10):57-72.
  • 6. Dos Santos MG, Schimith LE, André-Miral C, Muccillo-Baisch AL, Arbo BD, & Hort M A. Neuroprotective effects of resve-ratrol in in vivo and in vitro experimental models of Parkin-son’s disease: A systematic review. Neurotox Res, 2022; 40:319–345.
  • 7. Zhang LF, Yu XL, Ji M, Liu SY, Wu XL, Wang YJ, et al. Resverat-rol alleviates motor and cognitive deficits and neuropatho-logy in the A53T α-synuclein mouse model of Parkinson's di-sease. Food Funct, 2018; 9(12): 6414-6426.
  • 8. Berman AY, Motechin RA, Wiesenfeld MY, & Holz MK. The therapeutic potential of resveratrol: a review of clinical trials. NPJ Precis Oncol, 2017;1(1):35-46.
  • 9. Kim D, Yoo JM, Hwang H, Lee J, Lee SH, Yun SP, et al. Grap-hene quantum dots prevent α-synucleinopathy in Parkin-son’s disease. Nat Nanotechnol, 2018;13(9):812-818.
  • 10. Ben-Zichri S, Rajendran S, Bhunia SK, & Jelinek R. Resveratrol Carbon Dots Disrupt Mitochondrial Function in Cancer Cells. Bioconjug Chem, 2022;33(9):1663-1671.
  • 11. Xu X, Zhang K, Zhao L, Li C, Bu W, Shen Y, et al. Aspirin-based carbon dots, a good biocompatibility of material applied for bioimaging and anti-inflammation. ACS Appl Mater Interfa-ces, 2016; 8(48):32706-32716.
  • 12. Ferah Okkay I, Okkay U, Cicek B, Yilmaz A, Yesilyurt F, Mendil AS, et al. Neuroprotective effect of bromelain in 6-hydroxydopamine induced in vitro model of Parkinson’s di-sease. Mol Biol Rep, 2021:48;7711-7717.
  • 13. Tiong CX, Lu M, & Bian JS. Protective effect of hydrogen sulphide against 6‐OHDA‐induced cell injury in SH‐SY5Y cells involves PKC/PI3K/Akt pathway. Br J Pharmacol, 2010;161(2):467-480.
  • 14. Cicek B, & Danışman B. Cerium Oxide Nanoparticles Rescue Dopaminergic Neurons in Parkinson’s Disease Model of SH-SY5Y Cells via Modulating Nrf2 Signaling and Ameliorating Apoptotic Cell Death. ABC Research, 2023;5(2):284-290.
  • 15. Lee GH, Lee WJ, Hur J, Kim E, Lee HG., & Seo HG. Ginsenosi-de Re mitigates 6-hydroxydopamine-induced oxidative stress through upregulation of GPX4. Mol, 2020; 25(1):188-201.
  • 16. Raza C, & Anjum R. Parkinson's disease: Mechanisms, transla-tional models and management strategies. Life Sci, 2019; 226:77-90.
  • 17. Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stab-le ABTS radical cation. Clin Biochem, 2004;37(4): 277-285.
  • 18. Erel O. A new automated colorimetric method for measuring total oxidant status. Clin Biochem, 2005; 38(12):1103-1111.
  • 19. Leathem A, Simone M, Dennis JM, & Witting PK. The Cyclic Nitroxide TEMPOL Ameliorates Oxidative Stress but Not Inf-lammation in a Cell Model of Parkinson’s Disease. Antioxid, 2022:11(2);257-279.
  • 20. Kesh S, Kannan RR, Balakrishnan A. Naringenin alleviates 6-hydroxydopamine induced Parkinsonism in SHSY5Y cells and zebrafish model. Comp Biochem Physiol Part - C: Toxicol Pharmacol, 2021;239:1-7.
  • 21. Taylor JM, Main BS, & Crack PJ. Neuroinflammation and oxidative stress: co-conspirators in the pathology of Parkin-son’s disease. Neurochem Int, 2013; 62(5):803-819.
  • 22. Shao J, Liu X, Lian M, & Mao Y. Citronellol Prevents 6-OHDA-Induced Oxidative Stress, Mitochondrial Dysfunction, and Apoptosis in Parkinson Disease Model of SH-SY5Y Cells via Modulating ROS-NO, MAPK/ERK, and PI3K/Akt Signaling Pathways. Neurotox Res, 2022; 40:1-17.
  • 23. Adebayo OG, Asiwe JN, Ben‐Azu B, Aduema W, Onyeleonu I, Akpotu AE, et al. Ginkgo biloba protects striatal neurodege-neration and gut phagoinflammatory damage in rotenone‐induced mice model of Parkinson's disease: Role of executi-oner caspase‐3/Nrf2/ARE signaling. J Food Biochem, 2022; 46(9):1-18.
  • 24. Ahmad MH, Fatima M, Ali M, Rizvi MA, & Mondal AC. Narin-genin alleviates paraquat-induced dopaminergic neuronal loss in SH-SY5Y cells and a rat model of Parkinson's disease. Neuropharmacology, 2021;201:1-14.
  • 25. Chen CH, Hsu PC, Hsu SW, Hong KT, Chen KY, He JL, et al. Protective Effects of Jujubosides on 6-OHDA-Induced Neuro-toxicity in SH-SY5Y and SK-N-SH Cells. Mol, 2022; 27(13):4106-4123.
There are 25 citations in total.

Details

Primary Language English
Subjects Central Nervous System, Neurology and Neuromuscular Diseases, Systems Physiology
Journal Section Research Article
Authors

Betul Cicek 0000-0003-1395-1326

Betül Danışman 0000-0002-3812-9884

Early Pub Date November 7, 2023
Publication Date December 31, 2023
Submission Date June 22, 2023
Acceptance Date October 3, 2023
Published in Issue Year 2023

Cite

Vancouver Cicek B, Danışman B. Protective Effects of Resveratrol Carbon Dots Against 6-OHDA-Induced Neurotoxicity in SH-SY5Y Cells. Harran Üniversitesi Tıp Fakültesi Dergisi. 2023;20(3):508-12.

Harran Üniversitesi Tıp Fakültesi Dergisi  / Journal of Harran University Medical Faculty