Research Article
BibTex RIS Cite

The Effects of Body Mass Index and Blood Group on Immune Thrombocytopenia Therapy

Year 2023, , 298 - 304, 31.08.2023
https://doi.org/10.35440/hutfd.1321714

Abstract

Background: The effects of body mass index (BMI) and blood groups on immune thrombocytopenia (ITP) are not clearly known. This study aims to investigate the effect of BMI and blood groups on the treatment of ITP.
Materials and Methods: All cases included in this study were primary ITP patients. Body measure-ments, treatment history, demographic, and laboratory data were recorded. The data obtained were analyzed after the patients were divided into groups based on BMI and blood groups.
Results: The study included 68 (100%) cases, 53 of which were female (77.9%). The median age of the cases was 44 years (min: 18, max: 87). The median BMI was 28.05 (min: 17.6, max: 51.4), and patients with normal weight, overweight, and obesity were found in 24 (35.3%), 20 (29.4%), and 24 (35.3%) cases, respectively. According to blood groups, 29 (42.6%), 20 (29.4%), 11 (16.2%), and 8 (11.8%) cases had blood groups A, O, B, and AB, respectively. The analysis of BMI and blood groups together with demographic and laboratory variables revealed that patients with obesity had a higher mean age (p=0.049) and lactate dehydrogenase levels (p<0.001) than other BMI groups. In the analysis of treat-ment responses, it was found that using eltrombopag in the second-line treatment in the patients with normal weight group was associated with a better response than other BMI groups (p=0.025).
Conclusions: This is the first study to look investigate the relationship between BMI and ITP therapy. According to the results of our study, we believe that BMI should be considered in the selection of second-line therapy for ITP.

References

  • 1. Song F, Al-Samkari H. Management of Adult Patients with Immune Thrombocytopenia (ITP): A Review on Current Guidance and Experience from Clinical Practice. J Blood Med. 2021;12:653-64.
  • 2. Provan D, Arnold DM, Bussel JB, Chong BH, Cooper N, Gernsheimer T, et al. Updated international consensus re-port on the investigation and management of primary im-mune thrombocytopenia. Blood Adv. 2019;3(22):3780-817.
  • 3. Terrell DR, Neunert CE, Cooper N, Heitink-Pollé KM, Kruse C, Imbach P, et al. Immune Thrombocytopenia (ITP): Cur-rent Limitations in Patient Management. Medicina (Kau-nas). 2020;56(12).
  • 4. Wallin A, Larsson SC. Body mass index and risk of multiple myeloma: a meta-analysis of prospective studies. Eur J Can-cer. 2011;47(11):1606-15.
  • 5. Inaba H, Surprise HC, Pounds S, Cao X, Howard SC, Ringwald-Smith K, et al. Effect of body mass index on the outcome of children with acute myeloid leukemia. Cancer. 2012;118(23):5989-96.
  • 6. Orgel E, Tucci J, Alhushki W, Malvar J, Sposto R, Fu CH, et al. Obesity is associated with residual leukemia following in-duction therapy for childhood B-precursor acute lympho-blastic leukemia. Blood. 2014;124(26):3932-8.
  • 7. den Hoed MA, Pluijm SM, de Groot-Kruseman HA, te Win-kel ML, Fiocco M, van den Akker EL, et al. The negative im-pact of being underweight and weight loss on survival of children with acute lymphoblastic leukemia. Haematologica. 2015;100(1):62-9.
  • 8. Eissa HM, Zhou Y, Panetta JC, Browne EK, Jeha S, Cheng C, et al. The effect of body mass index at diagnosis on clinical outcome in children with newly diagnosed acute lympho-blastic leukemia. Blood Cancer J. 2017;7(2):e531.
  • 9. Løhmann DJA, Asdahl PH, Abrahamsson J, Ha SY, Jónsson Ó G, Kaspers GJL, et al. Associations between pretherapeutic body mass index, outcome, and cytogenetic abnormalities in pediatric acute myeloid leukemia. Cancer Med. 2019;8(15):6634-43.
  • 10. Abar L, Sobiecki JG, Cariolou M, Nanu N, Vieira AR, Stevens C, et al. Body size and obesity during adulthood, and risk of lympho-haematopoietic cancers: an update of the WCRF-AICR systematic review of published prospective studies. Ann Oncol. 2019;30(4):528-41.
  • 11. Samocha-Bonet D, Justo D, Rogowski O, Saar N, Abu-Abeid S, Shenkerman G, et al. Platelet counts and platelet activa-tion markers in obese subjects. Mediators Inflamm. 2008;2008:834153.
  • 12. Raoux L, Moszkowicz D, Vychnevskaia K, Poghosyan T, Beauchet A, Clauser S, et al. Effect of Bariatric Surgery-Induced Weight Loss on Platelet Count and Mean Platelet Volume: a 12-Month Follow-Up Study. Obes Surg. 2017;27(2):387-93.
  • 13. Başcı S, Yiğenoğlu TN, Şahin D, Saygılı Ö, Bakırtaş M, Uncu Ulu B, et al. The Relationship Between ABO and Rh Blood Groups with Acute Lymphoblastic Leukemia. Acta Oncologi-ca Turcica. 2020;53(2):357-61.
  • 14. Osada Y, Ito C, Nishiyama-Fujita Y, Ogura S, Sakurai A, Akimoto M, et al. Prognostic Impact of ABO Blood Group on Survival in Patients With Malignant Lymphoma. Clin Lym-phoma Myeloma Leuk. 2020;20(2):122-9.
  • 15. Göçer M, Kurtoğlu E. Effect of the ABO blood groups on the development, clinical features and survival of multiple mye-loma. Memo. 2021;14(3):235-40.
  • 16. Ulu BU, Başcı S, Bakırtaş M, Yiğenoğlu TN, Batgi H, Yıldız J, et al. Could blood groups have prognostic significance on sur-vival in patients with diffuse large B cell lymphoma? Leuk Res. 2022;115:106810.
  • 17. Eren C, Çeçen S. Analysis between Platelet Count and Blood Groups in Apheresis Platelet Donors with Demographic Fea-tures. Medical Laboratory Technology Journal. 2019;5(2):131-7.
  • 18. Okeke CO IV. Influence of ABO Blood Group on Fibrinogen Levels and Platelet Count in Apparently Healthy Nigerian Subjects. Int J Blood Res Disord. 2020;7(2):1-5.
  • 19. Kenchaiah S, Evans JC, Levy D, Wilson PW, Benjamin EJ, Larson MG, et al. Obesity and the risk of heart failure. N Engl J Med. 2002;347(5):305-13.
  • 20. Rodeghiero F, Stasi R, Gernsheimer T, Michel M, Provan D, Arnold DM, et al. Standardization of terminology, defini-tions and outcome criteria in immune thrombocytopenic purpura of adults and children: report from an international working group. Blood. 2009;113(11):2386-93.
  • 21. Grace RF, Neunert C. Second-line therapies in immune thrombocytopenia. Hematology Am Soc Hematol Educ Pro-gram. 2016;2016(1):698-706.
  • 22. Lal LS, Said Q, Andrade K, Cuker A. Second-line treatments and outcomes for immune thrombocytopenia: A retrospec-tive study with electronic health records. Res Pract Thromb Haemost. 2020;4(7):1131-40.
  • 23. Nazaryan H, Liu Y, Sirotich E, Duncan JM, Arnold DM. Sec-ond-Line Therapy for Immune Thrombocytopenia: Real-World Experience. Blood. 2019;134(Supplement_1):2120-.
  • 24. Lim HJ, Seo MS, Shim JY, Kim KE, Shin YH, Lee YJ. The associ-ation between platelet count and metabolic syndrome in children and adolescents. Platelets. 2015;26(8):758-63.
  • 25. Jeong HR, Lee HS, Shim YS, Hwang JS. Positive Associations between Body Mass Index and Hematological Parameters, Including RBCs, WBCs, and Platelet Counts, in Korean Chil-dren and Adolescents. Children (Basel). 2022;9(1).
  • 26. Purdy JC, Shatzel JJ. The hematologic consequences of obesity. Eur J Haematol. 2021;106(3):306-19.
  • 27. Goudswaard LJ, Corbin LJ, Burley KL, Mumford A, Akbari P, Soranzo N, et al. Higher body mass index raises immature platelet count: potential contribution to obesity-related thrombosis. Platelets. 2022;33(6):869-78.
  • 28. Hanafy E, Pakra MA. Immune Thrombocytopenia and Obe-sity: Predictive Relationship. Ochsner J. 2017;17(1):115-7.
  • 29. Bloom MB, Zaw AA, Hoang DM, Mason R, Alban RF, Chung R, et al. Body mass index strongly impacts the diagnosis and incidence of heparin-induced thrombocytopenia in the sur-gical intensive care unit. J Trauma Acute Care Surg. 2016;80(3):398-403.
  • 30. Cheng G, Saleh MN, Marcher C, Vasey S, Mayer B, Aivado M, et al. Eltrombopag for management of chronic immune thrombocytopenia (RAISE): a 6-month, randomised, phase 3 study. Lancet. 2011;377(9763):393-402.
  • 31. Wong RSM, Saleh MN, Khelif A, Salama A, Portella MSO, Burgess P, et al. Safety and efficacy of long-term treatment of chronic/persistent ITP with eltrombopag: final results of the EXTEND study. Blood. 2017;130(23):2527-36.
  • 32. Karnes JH, Rollin J, Giles JB, Martinez KL, Steiner HE, Shaffer CM, et al. ABO O blood group as a risk factor for platelet re-activity in heparin-induced thrombocytopenia. Blood. 2022;140(3):274-84.
  • 33. Yıldırım M, Sayın S, Güneş AK, Reis Aras M, Safak Yılmaz E, Albayrak M, et al. Effect of Blood Groups on Clinical Presen-tations and Treatment Outcomes in Immune Thrombotic Thrombocytopenic Purpura Patients with Severe ADAMTS13 Deficiency: A Multi-Center Experience. Transfu-sion Medicine and Hemotherapy. 2022.

Vücut Kitle İndeksi ve Kan Gruplarının İmmün Trombositopeni Tedavisine Etkisi

Year 2023, , 298 - 304, 31.08.2023
https://doi.org/10.35440/hutfd.1321714

Abstract

Amaç: Vücut kitle indeksi (VKİ) ve kan gruplarının immün trombositopeni (ITP) üzerindeki etkileri net olarak bilinmemektedir. Bu çalışmada VKİ ve kan gruplarının ITP tedavisindeki etkisinin araştırılması amaçlanmaktadır.
Materyal ve Metod: Bu çalışmaya dahil edilen tüm vakalar primer ITP hastalarından oluşmaktadır. Vücut ölçütleri, tedavi geçmişleri, demografik ve laboratuvar verileri kayıt altına alınmıştır. Hastalar VKİ ve kan gruplarına göre gruplara ayrıldıktan sonra elde edilen veriler analiz edilmiştir.
Bulgular: Çalışmaya 53’ü kadın (%77,9) toplamda 68 (%100) vaka dahil edilmiştir. Vakaların ortanca yaşı 44 yıl (min:18, max:87) saptanmıştır. Ortanca VKİ 28,05 (min:17,6, max:51,4) olup sırasıyla 24 (%35,3), 20 (%29,4) ve 24 (%35.3) vaka normal kilolu, aşırı kilolu ve obeziteli olarak saptandı. Kan grup-larına göre sırasıyla 29 (%42,6), 20 (%29,4), 11 (%16,2) ve 8 (%11,8) vaka A, O, B ve AB kan grubuna sahipti. VKİ ve kan gruplarının demografik ve laboratuvar değişkenleri ile analizinde obeziteli hastaların diğer VKİ gruplarına göre yaş ortalamalarının (p=0.049) ve laktat dehidrogenaz düzeylerinin daha yük-sek olduğu (p<0.001) saptanmıştır. Tedavi yanıtlarının analizinde ise normal kilolu grupta ikinci sıra tedavide eltrombopag kullanımının diğer VKİ gruplarına göre daha iyi yanıtla ilişkisi saptanmıştır (p=0.025).
Sonuç: Bu çalışma VKİ ve kan gruplarının ITP tedavisindeki etkisini araştıran ilk çalışmadır. Çalışma sonuçlarımıza göre ITP’nin ikinci basamak tedavi seçiminde VKİ’ninde göz önünde bulundurulması gerektiği görüşündeyiz.

References

  • 1. Song F, Al-Samkari H. Management of Adult Patients with Immune Thrombocytopenia (ITP): A Review on Current Guidance and Experience from Clinical Practice. J Blood Med. 2021;12:653-64.
  • 2. Provan D, Arnold DM, Bussel JB, Chong BH, Cooper N, Gernsheimer T, et al. Updated international consensus re-port on the investigation and management of primary im-mune thrombocytopenia. Blood Adv. 2019;3(22):3780-817.
  • 3. Terrell DR, Neunert CE, Cooper N, Heitink-Pollé KM, Kruse C, Imbach P, et al. Immune Thrombocytopenia (ITP): Cur-rent Limitations in Patient Management. Medicina (Kau-nas). 2020;56(12).
  • 4. Wallin A, Larsson SC. Body mass index and risk of multiple myeloma: a meta-analysis of prospective studies. Eur J Can-cer. 2011;47(11):1606-15.
  • 5. Inaba H, Surprise HC, Pounds S, Cao X, Howard SC, Ringwald-Smith K, et al. Effect of body mass index on the outcome of children with acute myeloid leukemia. Cancer. 2012;118(23):5989-96.
  • 6. Orgel E, Tucci J, Alhushki W, Malvar J, Sposto R, Fu CH, et al. Obesity is associated with residual leukemia following in-duction therapy for childhood B-precursor acute lympho-blastic leukemia. Blood. 2014;124(26):3932-8.
  • 7. den Hoed MA, Pluijm SM, de Groot-Kruseman HA, te Win-kel ML, Fiocco M, van den Akker EL, et al. The negative im-pact of being underweight and weight loss on survival of children with acute lymphoblastic leukemia. Haematologica. 2015;100(1):62-9.
  • 8. Eissa HM, Zhou Y, Panetta JC, Browne EK, Jeha S, Cheng C, et al. The effect of body mass index at diagnosis on clinical outcome in children with newly diagnosed acute lympho-blastic leukemia. Blood Cancer J. 2017;7(2):e531.
  • 9. Løhmann DJA, Asdahl PH, Abrahamsson J, Ha SY, Jónsson Ó G, Kaspers GJL, et al. Associations between pretherapeutic body mass index, outcome, and cytogenetic abnormalities in pediatric acute myeloid leukemia. Cancer Med. 2019;8(15):6634-43.
  • 10. Abar L, Sobiecki JG, Cariolou M, Nanu N, Vieira AR, Stevens C, et al. Body size and obesity during adulthood, and risk of lympho-haematopoietic cancers: an update of the WCRF-AICR systematic review of published prospective studies. Ann Oncol. 2019;30(4):528-41.
  • 11. Samocha-Bonet D, Justo D, Rogowski O, Saar N, Abu-Abeid S, Shenkerman G, et al. Platelet counts and platelet activa-tion markers in obese subjects. Mediators Inflamm. 2008;2008:834153.
  • 12. Raoux L, Moszkowicz D, Vychnevskaia K, Poghosyan T, Beauchet A, Clauser S, et al. Effect of Bariatric Surgery-Induced Weight Loss on Platelet Count and Mean Platelet Volume: a 12-Month Follow-Up Study. Obes Surg. 2017;27(2):387-93.
  • 13. Başcı S, Yiğenoğlu TN, Şahin D, Saygılı Ö, Bakırtaş M, Uncu Ulu B, et al. The Relationship Between ABO and Rh Blood Groups with Acute Lymphoblastic Leukemia. Acta Oncologi-ca Turcica. 2020;53(2):357-61.
  • 14. Osada Y, Ito C, Nishiyama-Fujita Y, Ogura S, Sakurai A, Akimoto M, et al. Prognostic Impact of ABO Blood Group on Survival in Patients With Malignant Lymphoma. Clin Lym-phoma Myeloma Leuk. 2020;20(2):122-9.
  • 15. Göçer M, Kurtoğlu E. Effect of the ABO blood groups on the development, clinical features and survival of multiple mye-loma. Memo. 2021;14(3):235-40.
  • 16. Ulu BU, Başcı S, Bakırtaş M, Yiğenoğlu TN, Batgi H, Yıldız J, et al. Could blood groups have prognostic significance on sur-vival in patients with diffuse large B cell lymphoma? Leuk Res. 2022;115:106810.
  • 17. Eren C, Çeçen S. Analysis between Platelet Count and Blood Groups in Apheresis Platelet Donors with Demographic Fea-tures. Medical Laboratory Technology Journal. 2019;5(2):131-7.
  • 18. Okeke CO IV. Influence of ABO Blood Group on Fibrinogen Levels and Platelet Count in Apparently Healthy Nigerian Subjects. Int J Blood Res Disord. 2020;7(2):1-5.
  • 19. Kenchaiah S, Evans JC, Levy D, Wilson PW, Benjamin EJ, Larson MG, et al. Obesity and the risk of heart failure. N Engl J Med. 2002;347(5):305-13.
  • 20. Rodeghiero F, Stasi R, Gernsheimer T, Michel M, Provan D, Arnold DM, et al. Standardization of terminology, defini-tions and outcome criteria in immune thrombocytopenic purpura of adults and children: report from an international working group. Blood. 2009;113(11):2386-93.
  • 21. Grace RF, Neunert C. Second-line therapies in immune thrombocytopenia. Hematology Am Soc Hematol Educ Pro-gram. 2016;2016(1):698-706.
  • 22. Lal LS, Said Q, Andrade K, Cuker A. Second-line treatments and outcomes for immune thrombocytopenia: A retrospec-tive study with electronic health records. Res Pract Thromb Haemost. 2020;4(7):1131-40.
  • 23. Nazaryan H, Liu Y, Sirotich E, Duncan JM, Arnold DM. Sec-ond-Line Therapy for Immune Thrombocytopenia: Real-World Experience. Blood. 2019;134(Supplement_1):2120-.
  • 24. Lim HJ, Seo MS, Shim JY, Kim KE, Shin YH, Lee YJ. The associ-ation between platelet count and metabolic syndrome in children and adolescents. Platelets. 2015;26(8):758-63.
  • 25. Jeong HR, Lee HS, Shim YS, Hwang JS. Positive Associations between Body Mass Index and Hematological Parameters, Including RBCs, WBCs, and Platelet Counts, in Korean Chil-dren and Adolescents. Children (Basel). 2022;9(1).
  • 26. Purdy JC, Shatzel JJ. The hematologic consequences of obesity. Eur J Haematol. 2021;106(3):306-19.
  • 27. Goudswaard LJ, Corbin LJ, Burley KL, Mumford A, Akbari P, Soranzo N, et al. Higher body mass index raises immature platelet count: potential contribution to obesity-related thrombosis. Platelets. 2022;33(6):869-78.
  • 28. Hanafy E, Pakra MA. Immune Thrombocytopenia and Obe-sity: Predictive Relationship. Ochsner J. 2017;17(1):115-7.
  • 29. Bloom MB, Zaw AA, Hoang DM, Mason R, Alban RF, Chung R, et al. Body mass index strongly impacts the diagnosis and incidence of heparin-induced thrombocytopenia in the sur-gical intensive care unit. J Trauma Acute Care Surg. 2016;80(3):398-403.
  • 30. Cheng G, Saleh MN, Marcher C, Vasey S, Mayer B, Aivado M, et al. Eltrombopag for management of chronic immune thrombocytopenia (RAISE): a 6-month, randomised, phase 3 study. Lancet. 2011;377(9763):393-402.
  • 31. Wong RSM, Saleh MN, Khelif A, Salama A, Portella MSO, Burgess P, et al. Safety and efficacy of long-term treatment of chronic/persistent ITP with eltrombopag: final results of the EXTEND study. Blood. 2017;130(23):2527-36.
  • 32. Karnes JH, Rollin J, Giles JB, Martinez KL, Steiner HE, Shaffer CM, et al. ABO O blood group as a risk factor for platelet re-activity in heparin-induced thrombocytopenia. Blood. 2022;140(3):274-84.
  • 33. Yıldırım M, Sayın S, Güneş AK, Reis Aras M, Safak Yılmaz E, Albayrak M, et al. Effect of Blood Groups on Clinical Presen-tations and Treatment Outcomes in Immune Thrombotic Thrombocytopenic Purpura Patients with Severe ADAMTS13 Deficiency: A Multi-Center Experience. Transfu-sion Medicine and Hemotherapy. 2022.
There are 33 citations in total.

Details

Primary Language English
Subjects Haematology
Journal Section Research Article
Authors

Murat Kaçmaz 0000-0003-1111-8605

Yavuz Katırcılar 0000-0002-4070-3697

Early Pub Date August 16, 2023
Publication Date August 31, 2023
Submission Date July 2, 2023
Acceptance Date July 11, 2023
Published in Issue Year 2023

Cite

Vancouver Kaçmaz M, Katırcılar Y. The Effects of Body Mass Index and Blood Group on Immune Thrombocytopenia Therapy. Harran Üniversitesi Tıp Fakültesi Dergisi. 2023;20(2):298-304.

Harran Üniversitesi Tıp Fakültesi Dergisi  / Journal of Harran University Medical Faculty