Amaç: Bu retrospektif çalışmanın amacı, bilgisayar destekli bir algoritma olan VolBrain programını kullanarak pediatrik Multiple Skleroz’lu (pMS) hastalarda lezyon yükünü değerlendirmektir. Çalışma, bu otomatik aracın performansını nörogörüntüleme analistleri tarafından gerçekleştirilen geleneksel tespit yöntemleriyle karşılaştırarak pMS'de lezyon ölçümü için otomatik araçların potansiyeline ilişkin önemli bilgiler sunmayı hedeflemiştir.
Materyal ve metod: Çalışma grubu Atatürk Üniversitesi Araştırma Hastanesi'ne kayıtlı 10-18 yaş arası 20 pMS hastasından oluşmuştur. Lezyon değerlendirmesi VolBrain programı (anatomist tarafından) ve standart tespit yöntemleri (bir nöroradyolog tarafından) kullanılarak T2 SPACE dark matter sekansları kullanılarak yapıldı. İstatistiksel analiz Wilcoxon ve Pearson korelasyon testlerini içeriyordu ve çalışma etik hususlara ve standartlaştırılmış manyetik rezonans görüntüleme (MRI) protokollerine bağlı kaldı.
Bulgular: Bu çalışmada 10-18 yaş arası pMS hastalarının %60'ı kız (n=12) ve %40'ı erkeklerden (n=8) oluşmaktadır. Yaş ortalaması kızlarda 15,67±1,969, erkeklerde ise 14,50±2,20 yıldı (p=0,24). Plak sayımı analizi, tüm pMS hastalarında radyolog ve VolBrain değerlendirmesi arasında istatistiksel olarak anlamlı bir fark olduğunu gösterdi (p=0,021). Kız pMS hastalarında da anlamlı farklılıklar gözlenirken (p=0,034), erkeklerde ise bu fark görülmedi (p=0,362). Radyolog ve VolBrain değerlendirmeleri arasındaki korelasyonlar, hem kız hem de erkek hastalarda plak sayısı, lezyon yükü ve Genişletilmiş Engellilik Durum Ölçeği (EDSS) skorları için güçlü korelasyonlar olduğunu göstermiştir (p<0,01).
Sonuç: Bu çalışma, VolBrain programının pMS hastalarında lezyon yükünü değerlendirmedeki potansiyelini ortaya koymaktadır. Geleneksel yöntemler ve klinik parametrelerle gözlemlenen korelasyonlar VolBrain'in eşzamanlı geçerliliğini desteklemekte ve potansiyel klinik uygunluğunu vurgulamaktadır. Otomatik araçların rutin klinik uygulamaya dahil edilmesi, lezyon miktarının doğruluğunu artırabilir ve böylece pMS'nin daha iyi izlenmesine ve yönetimine katkıda bulunabilir.
Background: The aim of this retrospective study was to assess the lesion burden in pediatric patients with multiple sclerosis (pMS) using a computer-assisted algorithm, specifically the VolBrain program. The study aimed to compare the performance of this automated tool with traditional detection methods performed by neuroimaging analysts, providing valuable insights into the potential of automated tools for lesion quantification in pMS.
Materials and Methods: The study cohort consisted of 20 PMS patients, aged 10-18 years, registered at Atatürk University Research Hospital. Lesion assessment was performed using the VolBrain program (by an anatomist) and standard detection methods (by a neuroradiologist) using T2 SPACE dark matter sequences. Statistical analysis included Wilcoxon and Pearson correlation tests, and the study adhered to ethical considerations and standardised magnetic resonance imaging (MRI) protocols.
Results: In this study, pMS patients aged 10-18 years, the cohort consisted of 60% females (n=12) and 40% males (n=8). The mean age for females was 15.67±1.969 and for males 14.50±2.20 years (p=0.24). Plaque count analysis showed a statistically significant difference between radiologist and VolBrain assessment in all pMS patients (p=0.021). Significant differences were also observed in female pMS patients (p=0.034) but not in males (p=0.362). Correlations between radiologist and VolBrain assessments showed significant associations in both female and male patients, with strong correlations observed for plaque number, lesion burden and Expanded Disability Status Scale (EDSS) scores (p<0.01).
Conclusions: This study demonstrates the potential of the VolBrain programme in assessing lesion burden in pMS patients. The observed correlations with traditional methods and clinical parameters support the concurrent validity of VolBrain and emphasise its potential clinical relevance. Incorporating automated tools into routine clinical practice could improve the accuracy of lesion quantification and thus contribute to improved monitoring and management of pMS.
Primary Language | English |
---|---|
Subjects | Radiology and Organ Imaging |
Journal Section | Research Article |
Authors | |
Early Pub Date | July 23, 2024 |
Publication Date | August 29, 2024 |
Submission Date | March 25, 2024 |
Acceptance Date | April 26, 2024 |
Published in Issue | Year 2024 |
Harran Üniversitesi Tıp Fakültesi Dergisi / Journal of Harran University Medical Faculty