Research Article
BibTex RIS Cite

Effect of Kefir Consumption on Lipid Metabolism and Adipokine Hormones in BALB/C Mice Fed A High-Fat Diet

Year 2023, Volume: 20 Issue: 3, 678 - 683, 31.12.2023
https://doi.org/10.35440/hutfd.1371056

Abstract

Background: The imbalance in pro-inflammatory and anti-inflammatory hormones secreted by the increase in fat tissue causes chronic inflammation in the fat tissue. It is thought that this chronic inflammation causes metabolic complications result-ing from obesity. Kefir is a type of probiotic that has recently attracted attention in the fight against obesity. This study aimed to examine the effects of kefir consumption on lipid profile and Adiponectin, Leptin, Resistin and Irisin/FNDC5 in the high fat diet fed BALB/C mouse model.
Materials and Methods: BALB/C strain male mice were divided into three groups: control group (n = 10), high fat diet (HFD) (n = 10) and HFD + Kefir (n = 10). Mice were fed specific dietary patterns for eight weeks. The control group was given standard pellet feed. The HFD group was given a high-fat diet containing 52% fat. In addition to the high-fat feed, 15 ml/kg kefir was given to the HFD+Kefir group via oral gavage. Lipid profile was measured on an autoanalyzer using commercial kits. Leptin, Adiponectin, Resistin and Irisin/FNDC5 levels were measured by enzyme-linked immunosorbent assay (ELISA) using commer-cially available kits.
Results: As a result of the experiment, there was no difference between the live weight gains of the groups. Epididymal fat weights in the HFD and HFD+Kefir groups were found to be statistically significantly higher than the control group. There was no significant difference between the epididymal fat weights of the HFD and HFD+Kefir groups HDL Cholesterol (HDL-C), LDL Cholesterol (LDL-C) values in the HFD and HFD+Kefir groups were found to be statistically significantly higher than the control group. No statistically significant difference was detected between the HFD+Kefir group and the HFD group in terms of HDL-C, LDL-C values. There was no difference between groups in triglyceride values. Adiponectin and Irisin/FNDC5 values of the HFD+Kefir group were found to be statistically significantly lower than the other groups. There was no statistically significant difference between the control group and the HFD group in terms of Adiponectin and Irisin/FNDC5 values. There was no significant difference between the groups in Leptin and Resistin values.
Conclusions: It was thought that kefir may have metabolic effects through adipokines in the high-fat diet nutrition model, and it would be useful to support this with human studies.

Ethical Statement

This study was planned at Gaziantep University, Department of Medical Biochemistry and was approved by the Gaziantep University Experimental Animal Local Ethics Committee meeting dated 25.12.2019 with decision number 2019/45.

Supporting Institution

BAP

Project Number

TF.UT.20.15

References

  • 1. Koebnick C, Black MH, Wu J, Shu YH, MacKay AW, Watana-be RM, et al. A diet high in sugar-sweetened beverage and low in fruits and vegetables is associated with adiposity and a pro-inflammatory adipokine profile. The British journal of nutrition. 2018;120(11):1230-9.
  • 2. Rouhani MH, Hadi A, Ghaedi E, Salehi M, Mahdavi A, Mo-hammadi H. Do probiotics, prebiotics and synbiotics affect adiponectin and leptin in adults? A systematic review and meta-analysis of clinical trials. Clinical nutrition (Edinburgh, Scotland). 2019;38(5):2031-7.
  • 3. Kim DH, Kim H, Jeong D, Kang IB, Chon JW, Kim HS, et al. Kefir alleviates obesity and hepatic steatosis in high-fat diet-fed mice by modulation of gut microbiota and mycobio-ta: targeted and untargeted community analysis with corre-lation of biomarkers. The Journal of nutritional bioche-mistry. 2017;44:35-43.
  • 4. Gérard P. Gut microbiota and obesity. Cellular and molecu-lar life sciences : CMLS. 2016;73(1):147-62.
  • 5. Azizi NF, Kumar MR, Yeap SK, Abdullah JO, Khalid M, Omar AR, et al. Kefir and Its Biological Activities. Foods (Basel, Switzerland). 2021;10(6).
  • 6. Choi JW, Kang HW, Lim WC, Kim MK, Lee IY, Cho HY. Kefir prevented excess fat accumulation in diet-induced obese mice. Bioscience, biotechnology, and biochemistry. 2017;81(5):958-65.
  • 7. Vitaglione P, Mazzone G, Lembo V, D'Argenio G, Rossi A, Guido M, et al. Coffee prevents fatty liver disease induced by a high-fat diet by modulating pathways of the gut–liver axis. 2019;8.
  • 8. Hariri N, Thibault L. High-fat diet-induced obesity in animal models. Nutrition research reviews. 2010;23(2):270-99.
  • 9. Li J, Wu H, Liu Y, Yang L. High fat diet induced obesity mo-del using four strainsof mice: Kunming, C57BL/6, BALB/c and ICR. Experimental animals. 2020;69(3):326-35.
  • 10. Peluzio M, Dias MME, Martinez JA, Milagro FI. Kefir and Intestinal Microbiota Modulation: Implications in Human Health. Frontiers in nutrition. 2021;8:638740.
  • 11. Rosa DD, Grześkowiak ŁM, Ferreira CL, Fonseca ACM, Reis SA, Dias MM, et al. Kefir reduces insulin resistance and inf-lammatory cytokine expression in an animal model of me-tabolic syndrome. 2016;7(8):3390-401.
  • 12. Li J, Pang B, Shao D, Jiang C, Hu X, Shi J. Artemisia sphaero-cephala Krasch polysaccharide mediates lipid metabolism and metabolic endotoxaemia in associated with the modu-lation of gut microbiota in diet-induced obese mice. Interna-tional journal of biological macromolecules. 2020;147:1008-17.
  • 13. Li J, Wu H, Liu Y, Yang L. High fat diet induced obesity mo-del using four strainsof mice: Kunming, C57BL/6, BALB/c and ICR. Exp Anim. 2020;69(3):326-35.
  • 14. Ivanovic N, Minic R, Dimitrijevic L, Radojevic Skodric S, Zivkovic I, Djordjevic B. Lactobacillus rhamnosus LA68 and Lactobacillus plantarum WCFS1 differently influence meta-bolic and immunological parameters in high fat diet-induced hypercholesterolemia and hepatic steatosis. Food & function. 2015;6(2):558-65.
  • 15. Lee HS, Nam Y, Chung YH, Kim HR, Park ES, Chung SJ, et al. Beneficial effects of phosphatidylcholine on high-fat diet-induced obesity, hyperlipidemia and fatty liver in mice. Life sciences. 2014;118(1):7-14.
  • 16. Feinman RD, Pogozelski WK, Astrup A, Bernstein RK, Fine EJ, Westman EC, et al. Dietary carbohydrate restriction as the first approach in diabetes management: critical review and evidence base. Nutrition (Burbank, Los Angeles County, Calif). 2015;31(1):1-13.
  • 17. Feingold KR. The Effect of Diet on Cardiovascular Disease and Lipid and Lipoprotein Levels. In: Feingold KR, Anawalt B, Blackman MR, Boyce A, Chrousos G, Corpas E, et al., editors. Endotext. South Dartmouth (MA): MDText.com, Inc. Copy-right © 2000-2023, MDText.com, Inc.; 2000.
  • 18. Burén J, Ericsson M, Damasceno NRT, Sjödin A. A Ketogenic Low-Carbohydrate High-Fat Diet Increases LDL Cholesterol in Healthy, Young, Normal-Weight Women: A Randomized Controlled Feeding Trial. Nutrients. 2021;13(3).
  • 19. Kapar FS, Ciftci G. The effects of curcumin and Lactobacillus acidophilus on certain hormones and insulin resistance in rats with metabolic syndrome. J Diabetes Metab Disord. 2020;19(2):907-14.
  • 20. Zorena K, Jachimowicz-Duda O, Ślęzak D, Robakowska M, Mrugacz M. Adipokines and Obesity. Potential Link to Meta-bolic Disorders and Chronic Complications. International jo-urnal of molecular sciences. 2020;21(10).
  • 21. Haluzik M, Haluzikova D. The role of resistin in obesity-induced insulin resistance. Current opinion in investigational drugs (London, England : 2000). 2006;7(4):306-11.
  • 22. Cipryan L, Dostal T, Plews DJ, Hofmann P, Laursen PB. Adi-ponectin/leptin ratio increases after a 12-week very low-carbohydrate, high-fat diet, and exercise training in healthy individuals: A non-randomized, parallel design study. Nutri-tion research (New York, NY). 2021;87:22-30.
  • 23. Noormohammadi M, Ghorbani Z, Löber U, Mahdavi-Roshan M, Bartolomaeus TUP, Kazemi A, et al. The effect of probio-tic and synbiotic supplementation on appetite-regulating hormones and desire to eat: A systematic review and meta-analysis of clinical trials. Pharmacological research. 2023;187:106614.
  • 24. Zhang Y, Meng X, Ma Z, Sun Z, Wang Z. Effects of Probiotic Supplementation on Nutrient Intake, Ghrelin, and Adiponec-tin Concentrations in Diabetic Hemodialysis Patients. Alter-native therapies in health and medicine. 2023;29(4):36-42.
  • 25. Perakakis N, Triantafyllou GA, Fernández-Real JM, Huh JY, Park KH, Seufert J, et al. Physiology and role of irisin in glu-cose homeostasis. Nature reviews Endocrinology. 2017;13(6):324-37.
  • 26. Arhire LI, Mihalache L, Covasa M. Irisin: A Hope in Unders-tanding and Managing Obesity and Metabolic Syndrome. 2019;10(524).
  • 27. Park KH, Zaichenko L, Brinkoetter M, Thakkar B, Sahin-Efe A, Joung KE, et al. Circulating irisin in relation to insulin resis-tance and the metabolic syndrome. The Journal of clinical endocrinology and metabolism. 2013;98(12):4899-907.
  • 28. Liu JJ, Wong MD, Toy WC, Tan CS, Liu S, Ng XW, et al. Lower circulating irisin is associated with type 2 diabetes mellitus. Journal of diabetes and its complications. 2013;27(4):365-9.
  • 29. Stengel A, Hofmann T, Goebel-Stengel M, Elbelt U, Kobelt P, Klapp BF. Circulating levels of irisin in patients with ano-rexia nervosa and different stages of obesity--correlation with body mass index. Peptides. 2013;39:125-30.

Yüksek Yağlı Bir Diyetle Beslenen BALB/C Farelerde Kefir Tüketiminin Lipid Metabolizması ve Adipokin Hormonlar Üzerine Etkileri

Year 2023, Volume: 20 Issue: 3, 678 - 683, 31.12.2023
https://doi.org/10.35440/hutfd.1371056

Abstract

Amaç: Yağ dokusunun artmasıyla salgılanan proinflamatuar ve antiinflamatuar hormonlardaki dengesizliğin, yağ dokusunda kronik inflamasyona neden olduğu, bunun da obeziteye bağlı metabolik komplikasyonlara neden olduğu düşünülmektedir. Kefir son zamanlarda obeziteyle mücadelede dikkat çeken bir probiyotik türüdür. Bu çalışma, yüksek yağlı diyetle beslenen BALB/C fare modelinde kefir tüketiminin lipit profili ve Adiponektin, Leptin, Resistin ve Irisin/FNDC5 üzerindeki etkilerini incelemeyi amaçladı.
Materyal ve Metod: BALB/c suşu erkek fareler; Kontrol grubu (n=10), yüksek yağlı diyet (HFD) (n=10) ve HFD+Kefir (n=10) olmak üzere 3 gruba ayrıldılar. Fareler 8 hafta boyunca belirli diyet kalıplarıyla beslendi. Kontrol grubuna standart pelet yem verildi. HFD grubuna %60 yağ içeren yüksek yağlı bir diyet verildi. YYD+Kefir grubuna yüksek yağlı yemin yanı sıra 15 ml/kg kefir oral gavaj yoluyla verildi. Lipid profili, ticari kitler kullanılarak bir otoanalizörde ölçüldü. Leptin, Adiponektin, Resistin ve İrisin/FNDC5 seviyeleri, ticari olarak temin edilebilen kitler kullanılarak enzim bağlantılı immünosorbent tahlili (ELISA) ile ölçüldü.
Bulgular: Deneme sonucunda grupların canlı ağırlık artışları arasında fark saptanmadı. HFD ve HFD+Kefir gruplarında epididimal yağ ağırlıkları kontrol grubuna göre istatistiksel olarak anlamlı düzeyde yüksek bulunmuştur. HFD ve HFD+Kefir gruplarının epididimal yağ ağırlıkları arasında anlamlı fark yoktu. HFD ve HFD+Kefir gruplarında total kolesterol, HDL-C, LDL-C değerleri Kontrol grubuna göre istatistiksel olarak anlamlı düzeyde yüksek bulunmuştur. HFD+Kefir grubu ile HFD grubu arasında Total kolesterol, HDL-K, LDL-K değerleri açısından istatistiksel olarak anlamlı bir fark saptanmadı. Trigliserit değerlerinde gruplar arasında fark yoktu. HFD+Kefir grubunun adiponektin ve İrisin/FNDC5 değerleri diğer gruplara göre istatistiksel olarak anlamlı derecede düşük bulundu. Kontrol grubu ile HFD grubu arasında Adiponektin ve İrisin/FNDC5 değerleri açısından istatistiksel olarak anlamlı fark saptanmadı. Leptin ve Resistin değerlerinde gruplar arasında anlamlı fark yoktu.
Sonuç: Yüksek yağlı diyet beslenme modelinde kefirin adipokinler aracılığıyla metabolik etkilere sahip olabileceği ve bunun insan çalışmaları ile desteklenmesinin faydalı olacağı düşünüldü.

Ethical Statement

This study was planned at Gaziantep University, Department of Medical Biochemistry and was approved by the Gaziantep University Experimental Animal Local Ethics Committee meeting dated 25.12.2019 with decision number 2019/45.

Supporting Institution

BAP

Project Number

TF.UT.20.15

References

  • 1. Koebnick C, Black MH, Wu J, Shu YH, MacKay AW, Watana-be RM, et al. A diet high in sugar-sweetened beverage and low in fruits and vegetables is associated with adiposity and a pro-inflammatory adipokine profile. The British journal of nutrition. 2018;120(11):1230-9.
  • 2. Rouhani MH, Hadi A, Ghaedi E, Salehi M, Mahdavi A, Mo-hammadi H. Do probiotics, prebiotics and synbiotics affect adiponectin and leptin in adults? A systematic review and meta-analysis of clinical trials. Clinical nutrition (Edinburgh, Scotland). 2019;38(5):2031-7.
  • 3. Kim DH, Kim H, Jeong D, Kang IB, Chon JW, Kim HS, et al. Kefir alleviates obesity and hepatic steatosis in high-fat diet-fed mice by modulation of gut microbiota and mycobio-ta: targeted and untargeted community analysis with corre-lation of biomarkers. The Journal of nutritional bioche-mistry. 2017;44:35-43.
  • 4. Gérard P. Gut microbiota and obesity. Cellular and molecu-lar life sciences : CMLS. 2016;73(1):147-62.
  • 5. Azizi NF, Kumar MR, Yeap SK, Abdullah JO, Khalid M, Omar AR, et al. Kefir and Its Biological Activities. Foods (Basel, Switzerland). 2021;10(6).
  • 6. Choi JW, Kang HW, Lim WC, Kim MK, Lee IY, Cho HY. Kefir prevented excess fat accumulation in diet-induced obese mice. Bioscience, biotechnology, and biochemistry. 2017;81(5):958-65.
  • 7. Vitaglione P, Mazzone G, Lembo V, D'Argenio G, Rossi A, Guido M, et al. Coffee prevents fatty liver disease induced by a high-fat diet by modulating pathways of the gut–liver axis. 2019;8.
  • 8. Hariri N, Thibault L. High-fat diet-induced obesity in animal models. Nutrition research reviews. 2010;23(2):270-99.
  • 9. Li J, Wu H, Liu Y, Yang L. High fat diet induced obesity mo-del using four strainsof mice: Kunming, C57BL/6, BALB/c and ICR. Experimental animals. 2020;69(3):326-35.
  • 10. Peluzio M, Dias MME, Martinez JA, Milagro FI. Kefir and Intestinal Microbiota Modulation: Implications in Human Health. Frontiers in nutrition. 2021;8:638740.
  • 11. Rosa DD, Grześkowiak ŁM, Ferreira CL, Fonseca ACM, Reis SA, Dias MM, et al. Kefir reduces insulin resistance and inf-lammatory cytokine expression in an animal model of me-tabolic syndrome. 2016;7(8):3390-401.
  • 12. Li J, Pang B, Shao D, Jiang C, Hu X, Shi J. Artemisia sphaero-cephala Krasch polysaccharide mediates lipid metabolism and metabolic endotoxaemia in associated with the modu-lation of gut microbiota in diet-induced obese mice. Interna-tional journal of biological macromolecules. 2020;147:1008-17.
  • 13. Li J, Wu H, Liu Y, Yang L. High fat diet induced obesity mo-del using four strainsof mice: Kunming, C57BL/6, BALB/c and ICR. Exp Anim. 2020;69(3):326-35.
  • 14. Ivanovic N, Minic R, Dimitrijevic L, Radojevic Skodric S, Zivkovic I, Djordjevic B. Lactobacillus rhamnosus LA68 and Lactobacillus plantarum WCFS1 differently influence meta-bolic and immunological parameters in high fat diet-induced hypercholesterolemia and hepatic steatosis. Food & function. 2015;6(2):558-65.
  • 15. Lee HS, Nam Y, Chung YH, Kim HR, Park ES, Chung SJ, et al. Beneficial effects of phosphatidylcholine on high-fat diet-induced obesity, hyperlipidemia and fatty liver in mice. Life sciences. 2014;118(1):7-14.
  • 16. Feinman RD, Pogozelski WK, Astrup A, Bernstein RK, Fine EJ, Westman EC, et al. Dietary carbohydrate restriction as the first approach in diabetes management: critical review and evidence base. Nutrition (Burbank, Los Angeles County, Calif). 2015;31(1):1-13.
  • 17. Feingold KR. The Effect of Diet on Cardiovascular Disease and Lipid and Lipoprotein Levels. In: Feingold KR, Anawalt B, Blackman MR, Boyce A, Chrousos G, Corpas E, et al., editors. Endotext. South Dartmouth (MA): MDText.com, Inc. Copy-right © 2000-2023, MDText.com, Inc.; 2000.
  • 18. Burén J, Ericsson M, Damasceno NRT, Sjödin A. A Ketogenic Low-Carbohydrate High-Fat Diet Increases LDL Cholesterol in Healthy, Young, Normal-Weight Women: A Randomized Controlled Feeding Trial. Nutrients. 2021;13(3).
  • 19. Kapar FS, Ciftci G. The effects of curcumin and Lactobacillus acidophilus on certain hormones and insulin resistance in rats with metabolic syndrome. J Diabetes Metab Disord. 2020;19(2):907-14.
  • 20. Zorena K, Jachimowicz-Duda O, Ślęzak D, Robakowska M, Mrugacz M. Adipokines and Obesity. Potential Link to Meta-bolic Disorders and Chronic Complications. International jo-urnal of molecular sciences. 2020;21(10).
  • 21. Haluzik M, Haluzikova D. The role of resistin in obesity-induced insulin resistance. Current opinion in investigational drugs (London, England : 2000). 2006;7(4):306-11.
  • 22. Cipryan L, Dostal T, Plews DJ, Hofmann P, Laursen PB. Adi-ponectin/leptin ratio increases after a 12-week very low-carbohydrate, high-fat diet, and exercise training in healthy individuals: A non-randomized, parallel design study. Nutri-tion research (New York, NY). 2021;87:22-30.
  • 23. Noormohammadi M, Ghorbani Z, Löber U, Mahdavi-Roshan M, Bartolomaeus TUP, Kazemi A, et al. The effect of probio-tic and synbiotic supplementation on appetite-regulating hormones and desire to eat: A systematic review and meta-analysis of clinical trials. Pharmacological research. 2023;187:106614.
  • 24. Zhang Y, Meng X, Ma Z, Sun Z, Wang Z. Effects of Probiotic Supplementation on Nutrient Intake, Ghrelin, and Adiponec-tin Concentrations in Diabetic Hemodialysis Patients. Alter-native therapies in health and medicine. 2023;29(4):36-42.
  • 25. Perakakis N, Triantafyllou GA, Fernández-Real JM, Huh JY, Park KH, Seufert J, et al. Physiology and role of irisin in glu-cose homeostasis. Nature reviews Endocrinology. 2017;13(6):324-37.
  • 26. Arhire LI, Mihalache L, Covasa M. Irisin: A Hope in Unders-tanding and Managing Obesity and Metabolic Syndrome. 2019;10(524).
  • 27. Park KH, Zaichenko L, Brinkoetter M, Thakkar B, Sahin-Efe A, Joung KE, et al. Circulating irisin in relation to insulin resis-tance and the metabolic syndrome. The Journal of clinical endocrinology and metabolism. 2013;98(12):4899-907.
  • 28. Liu JJ, Wong MD, Toy WC, Tan CS, Liu S, Ng XW, et al. Lower circulating irisin is associated with type 2 diabetes mellitus. Journal of diabetes and its complications. 2013;27(4):365-9.
  • 29. Stengel A, Hofmann T, Goebel-Stengel M, Elbelt U, Kobelt P, Klapp BF. Circulating levels of irisin in patients with ano-rexia nervosa and different stages of obesity--correlation with body mass index. Peptides. 2013;39:125-30.
There are 29 citations in total.

Details

Primary Language English
Subjects Medical Biochemistry - Proteins, Peptides and Proteomics
Journal Section Research Article
Authors

Seren Orhan 0000-0002-7394-7655

Hülya Çiçek 0000-0002-1065-1582

Mustafa Örkmez 0000-0001-5255-0504

Mehmet Akif Bozdayı 0000-0003-0459-0629

Efsane Yavuz 0000-0001-8212-9622

Davut Sinan Kaplan 0000-0003-4663-209X

Ahmet Sarper Bozkurt 0000-0002-7293-0974

Project Number TF.UT.20.15
Early Pub Date December 28, 2023
Publication Date December 31, 2023
Submission Date October 4, 2023
Acceptance Date December 26, 2023
Published in Issue Year 2023 Volume: 20 Issue: 3

Cite

Vancouver Orhan S, Çiçek H, Örkmez M, Bozdayı MA, Yavuz E, Kaplan DS, Bozkurt AS. Effect of Kefir Consumption on Lipid Metabolism and Adipokine Hormones in BALB/C Mice Fed A High-Fat Diet. Harran Üniversitesi Tıp Fakültesi Dergisi. 2023;20(3):678-83.

Harran Üniversitesi Tıp Fakültesi Dergisi  / Journal of Harran University Medical Faculty