Review
BibTex RIS Cite

Usage of Detoxification Enzyme Glutathione-S-Transferases over Galleria mellonella L. (Lepidoptera: Pyralidae) as Biomarkers of Insecticide Resistance

Year 2018, Volume: 4 Issue: 1, 1 - 10, 30.09.2018

Abstract

Insecticides are preferred because of their easy
applicability in combating pest insects and their short-term results.
Insecticides used over dose and unconsciously in agricultural areas cause
ecological damage. Also; the use of over dose insecticides in agricultural
areas has led to the development of insect resistance. Since the resistance
mechanism developed is genetic, it is transmitted to later fertilizers. For
this reason, it is important to apply the insecticides in the restricted areas
and in the optimal amount. Insects increase their detoxification capacities to
protected themselves from insecticides. Detoxification mechanisms are based on
the breakdown of insecticides before reaching the target area. The most
important detoxification enzyme in insects are Glutathion-S-Transferases (GST).
GST enzyme in insects has a role in protection of cellular membranes against
oxidative degradation as well as detoxification mechanism. Galleria mellonella may be used as a model organism for
understanding the insecticide resistance mechanism.

References

  • Beck, S D (1960) Arts,Growth and Development of the Greater Wax Moth, Galleria mellonella (L.) (Lepitoptera: Galleriidae) ,Wisconsin Academy of Sciences s. 49,137-149.
  • Bronskıll J (1961) A Cage to Simplify the Rearing of the Greater Wax Moth, Galleria mellonella (Pyralidae). J. Lep.Soc.,Vol. 15, No 2, s. 102-104.
  • Büyükgüzel, E., Büyükgüzel, K., Adamski, Z., Marciniak, P., Ventrella, E., Bufo, A., Erdem, M., Ziemnicki, K. (2013). The influence of diatery α-solanine on the waxmoth Galleria mellonella. Arch. Insect. Biochem. Physiol. 0:1-10
  • Büyükgüzel E., Kalender, Y. (2009). Exposure to streptomycin alters oxidative and antioxidative response in larval midgut tissues of Galleria mellonella. Pestic. Biochem. Physiol. 94: 112-118.
  • Büyükgüzel, K. (2001). DNA gyrase inhibitors: Novobiocin enhances the survival of Pimpla turionellae larvae reared on an artificial diet but other antibiotics do not. J. Appl. Entomol. 125: 583-587.
  • Cetin H, Demir E, Kocaoglu S, Kaya B (2010. Insecticidal Activity of Some Synthetic Pyrethroids with Different Rates of Piperonyl Butoxide (PBO) Combinations on Drosophila melanogaster (Diptera: Drosophilidae). Ekoloji 19 (75): 27-32.
  • Hollingworth, R.M. and K. Dong, (2008). The Biochemical and Molecular Genetic Basis of Resistance to Pesticides in Arthropods. (Global Pesticide Resistance in Arthropods, Ed: Whalaon, M.E., Mota-Sanchez, D. And Hollingworth, R.M.), 40-90, Cromwell, UK.
  • House H L (1972) Insect Nutrition, In Biology of Nutrition, Ed by T-W-Fiennes, R.N.Pergamon Press,Oxford ,513-575.
  • İçen E (2003) Antiviral ajan asiklovirin büyük bal mumu güvesi Galleria mellonella L. (Lepidoptera: Pyralidae) ‘ nın büyüme, yaşama ve gelişimine etkisi. Yüksek lisans tezi, Zonguldak Karaelmas Üniversitesi, Fen Bilimleri Enstitüsü, Zonguldak.
  • Konanz, S. and R. Nauen, (2004). Purification and Partial Characetrization of a Glutathione-S-transferase from the Two-spotted Spider Mite, Tetranychus urticae. Pesticide Biochemistry and Physiology, 79(2): 49-57.
  • Kranthi, K. R, (2005). Insecticide Resistance Monitoring, Mechanisms and Management Manual. Central Institute for Cotton Research 51-87.
  • Miller F, Uetz S (1998) Evaluating Biorational Pesticides for Controlling Arthropod Pests and Their Phytotoxic Effects on Greenhouse Crops. HortTechnology 8 (2): 185-192.
  • Özer C (2011) Subletal Dozlardaki Diazinon’un Galleria mellonella L.’nın Bazı Biyokimyasal Parametrelerine Etkileri, Adana, Çukurova Üniversitesi.
  • Sertçelik M., Sugeçti S., Büyükgüzel E., Necefoğlu H., Büyükgüzel K. (2018). Toxicological and Physiological Effects of Diaquabis(N,N-diethylnicotinamide-x N1)bis(4-formylbenzoato- x O)cobalt(II) complex on Galleria mellonella L. (Lepidoptera: Pyralidae) as a model organism. Karaelmas Fen ve Müh. Derg. 359-364.
  • Soderlund D. M. (1997). Molecular Mechanisms of Insecticide Resistance. (Molecular Mechanisms of Resistance to Agrochemicals, Volume Ed: Sjut, V., Chemistry of Plant Protection, Ed: Ebing, V.), Vol: 13, 21-73, Springer Germany.
  • Sugeçti S., Büyükgüzel E., Büyükgüzel K. (2016). Laboratory Assays of the Effects of Oxfendazole on Biological Parameters of Galleria mellonella (Lepidoptera: Pyralidae). J. Entomol. Sci. 51 (2): 129-137.
  • Sugeçti S., Çelik C., Büyükgüzel E., Büyükgüzel K. (2017). Biochemical Damage and Immuno-physiological Adaptation on Model Organism Galleria mellonella L. (Lepidoptera: Pyralidae) Larvae Exposed to Clinical Pathogen, Klebsiella oxytoca, XIII. Uluslararası Katılımlı Ekoloji ve Çevre Kongresi, s 483, Edirne.
  • Susurluk H. (2008). İki benekli Kırmızıörümcek Tetranychus urticae Koch (Acarina:Tetranychidae)’de Piretroid İnsektisitlere Karşı Oluşan Direncin Moleküler Karakterizasyonu. Ankara Üniversitesi Fen Bilimleri Enstitüsü Doktora Tezi.
  • Uckan F, Sak O (2010) Cytotoxic Effect of Cypermethrin on Pimpla turionellae (Hymenoptera: Ichneumonidae) Larval Hemocytes. Ekoloji 19 (75): 20-26.
  • Vınson S B (1976) Host Selection by Insect Parasitoids, Ann. Entomol., S.21, 109–133.
  • Vınson S B (1981) Semiochemicals, their Role in Pest Control Ed by W. J. Bell and R. T. Carde, Habitat S. 51–77.
  • Yorulmaz S and Ay R (2010). Akar ve Böceklerde Pestisitlerin Detoksifikasyonunda Rol Oynayan Enzimler. Journal of Agricultural Faculty of Uludag University, 24(2):137-148.
  • Yu, S. J. (2008). The Toxicology and Biochemistry of Insecticides. CRC Pres Taylor Francis Group, 250 pp.

Usage of Detoxification Enzyme Glutathione-S-Transferases over Galleria mellonella L. (Lepidoptera: Pyralidae) as Biomarkers of Insecticide Resistance

Year 2018, Volume: 4 Issue: 1, 1 - 10, 30.09.2018

Abstract

Insecticides are preferred because of their easy
applicability in combating pest insects and their short-term results.
Insecticides used over dose and unconsciously in agricultural areas cause
ecological damage. Also; the use of over dose insecticides in agricultural
areas has led to the development of insect resistance. Since the resistance
mechanism developed is genetic, it is transmitted to later fertilizers. For
this reason, it is important to apply the insecticides in the restricted areas
and in the optimal amount. Insects increase their detoxification capacities to
protected themselves from insecticides. Detoxification mechanisms are based on
the breakdown of insecticides before reaching the target area. The most
important detoxification enzyme in insects are Glutathion-S-Transferases (GST).
GST enzyme in insects has a role in protection of cellular membranes against
oxidative degradation as well as detoxification mechanism. Galleria mellonella may be used as a model organism for
understanding the insecticide resistance mechanism.

References

  • Beck, S D (1960) Arts,Growth and Development of the Greater Wax Moth, Galleria mellonella (L.) (Lepitoptera: Galleriidae) ,Wisconsin Academy of Sciences s. 49,137-149.
  • Bronskıll J (1961) A Cage to Simplify the Rearing of the Greater Wax Moth, Galleria mellonella (Pyralidae). J. Lep.Soc.,Vol. 15, No 2, s. 102-104.
  • Büyükgüzel, E., Büyükgüzel, K., Adamski, Z., Marciniak, P., Ventrella, E., Bufo, A., Erdem, M., Ziemnicki, K. (2013). The influence of diatery α-solanine on the waxmoth Galleria mellonella. Arch. Insect. Biochem. Physiol. 0:1-10
  • Büyükgüzel E., Kalender, Y. (2009). Exposure to streptomycin alters oxidative and antioxidative response in larval midgut tissues of Galleria mellonella. Pestic. Biochem. Physiol. 94: 112-118.
  • Büyükgüzel, K. (2001). DNA gyrase inhibitors: Novobiocin enhances the survival of Pimpla turionellae larvae reared on an artificial diet but other antibiotics do not. J. Appl. Entomol. 125: 583-587.
  • Cetin H, Demir E, Kocaoglu S, Kaya B (2010. Insecticidal Activity of Some Synthetic Pyrethroids with Different Rates of Piperonyl Butoxide (PBO) Combinations on Drosophila melanogaster (Diptera: Drosophilidae). Ekoloji 19 (75): 27-32.
  • Hollingworth, R.M. and K. Dong, (2008). The Biochemical and Molecular Genetic Basis of Resistance to Pesticides in Arthropods. (Global Pesticide Resistance in Arthropods, Ed: Whalaon, M.E., Mota-Sanchez, D. And Hollingworth, R.M.), 40-90, Cromwell, UK.
  • House H L (1972) Insect Nutrition, In Biology of Nutrition, Ed by T-W-Fiennes, R.N.Pergamon Press,Oxford ,513-575.
  • İçen E (2003) Antiviral ajan asiklovirin büyük bal mumu güvesi Galleria mellonella L. (Lepidoptera: Pyralidae) ‘ nın büyüme, yaşama ve gelişimine etkisi. Yüksek lisans tezi, Zonguldak Karaelmas Üniversitesi, Fen Bilimleri Enstitüsü, Zonguldak.
  • Konanz, S. and R. Nauen, (2004). Purification and Partial Characetrization of a Glutathione-S-transferase from the Two-spotted Spider Mite, Tetranychus urticae. Pesticide Biochemistry and Physiology, 79(2): 49-57.
  • Kranthi, K. R, (2005). Insecticide Resistance Monitoring, Mechanisms and Management Manual. Central Institute for Cotton Research 51-87.
  • Miller F, Uetz S (1998) Evaluating Biorational Pesticides for Controlling Arthropod Pests and Their Phytotoxic Effects on Greenhouse Crops. HortTechnology 8 (2): 185-192.
  • Özer C (2011) Subletal Dozlardaki Diazinon’un Galleria mellonella L.’nın Bazı Biyokimyasal Parametrelerine Etkileri, Adana, Çukurova Üniversitesi.
  • Sertçelik M., Sugeçti S., Büyükgüzel E., Necefoğlu H., Büyükgüzel K. (2018). Toxicological and Physiological Effects of Diaquabis(N,N-diethylnicotinamide-x N1)bis(4-formylbenzoato- x O)cobalt(II) complex on Galleria mellonella L. (Lepidoptera: Pyralidae) as a model organism. Karaelmas Fen ve Müh. Derg. 359-364.
  • Soderlund D. M. (1997). Molecular Mechanisms of Insecticide Resistance. (Molecular Mechanisms of Resistance to Agrochemicals, Volume Ed: Sjut, V., Chemistry of Plant Protection, Ed: Ebing, V.), Vol: 13, 21-73, Springer Germany.
  • Sugeçti S., Büyükgüzel E., Büyükgüzel K. (2016). Laboratory Assays of the Effects of Oxfendazole on Biological Parameters of Galleria mellonella (Lepidoptera: Pyralidae). J. Entomol. Sci. 51 (2): 129-137.
  • Sugeçti S., Çelik C., Büyükgüzel E., Büyükgüzel K. (2017). Biochemical Damage and Immuno-physiological Adaptation on Model Organism Galleria mellonella L. (Lepidoptera: Pyralidae) Larvae Exposed to Clinical Pathogen, Klebsiella oxytoca, XIII. Uluslararası Katılımlı Ekoloji ve Çevre Kongresi, s 483, Edirne.
  • Susurluk H. (2008). İki benekli Kırmızıörümcek Tetranychus urticae Koch (Acarina:Tetranychidae)’de Piretroid İnsektisitlere Karşı Oluşan Direncin Moleküler Karakterizasyonu. Ankara Üniversitesi Fen Bilimleri Enstitüsü Doktora Tezi.
  • Uckan F, Sak O (2010) Cytotoxic Effect of Cypermethrin on Pimpla turionellae (Hymenoptera: Ichneumonidae) Larval Hemocytes. Ekoloji 19 (75): 20-26.
  • Vınson S B (1976) Host Selection by Insect Parasitoids, Ann. Entomol., S.21, 109–133.
  • Vınson S B (1981) Semiochemicals, their Role in Pest Control Ed by W. J. Bell and R. T. Carde, Habitat S. 51–77.
  • Yorulmaz S and Ay R (2010). Akar ve Böceklerde Pestisitlerin Detoksifikasyonunda Rol Oynayan Enzimler. Journal of Agricultural Faculty of Uludag University, 24(2):137-148.
  • Yu, S. J. (2008). The Toxicology and Biochemistry of Insecticides. CRC Pres Taylor Francis Group, 250 pp.
There are 23 citations in total.

Details

Primary Language English
Subjects Architecture
Journal Section Research Article
Authors

Serkan Sugeçti 0000-0003-3412-2367

Ender Büyükgüzel

Kemal Büyükgüzel

Publication Date September 30, 2018
Published in Issue Year 2018 Volume: 4 Issue: 1

Cite

APA Sugeçti, S., Büyükgüzel, E., & Büyükgüzel, K. (2018). Usage of Detoxification Enzyme Glutathione-S-Transferases over Galleria mellonella L. (Lepidoptera: Pyralidae) as Biomarkers of Insecticide Resistance. International Anatolia Academic Online Journal Sciences Journal, 4(1), 1-10.