Review
BibTex RIS Cite

COVID-19 Associated Autoimmunity: “Are Autoantibodies Neglected?”

Year 2022, , 30 - 38, 29.12.2022
https://doi.org/10.56484/iamr.1197191

Abstract

Coronaviruses are a large family of viruses that can cause mild infections, such as the common cold, to more severe clinical manifestations. On 31 December 2019, cases of pneumonia of unknown etiology were reported in Wuhan, China. On 7 January 2020, the name of the disease was named Coronavirus Disease-2019 (COVID-19), and the agent was named SARS-CoV-2. Studies have shown that the worsening of the disease was immunopathological. Clinical progression rapidly worsens as a result of the onset of a severe immunological response to the virus and the elevation of cytokine levels. In addition to the intensified immunological response, some studies have focused on the effect of autoantibodies on the disease. Autoantibodies targeting their own cells and tissues have been reported in some patients. Although it is not known exactly how these autoantibodies are formed, theories are focused on the sensitization of the immune system to one's own cells and that some of the epitopes of the virus may resemble our antigens. Autoantibodies have been shown to increase the severity of the disease and prolong the healing process. (Anti-nücleer antibody) ANA, anti-phospholipid antibodies and anti-type 1 interferon antibodies were detected most frequently in COVID-19 cases. Rarely, other types of autoantibodies -Anti-neutrophil cytoplasmic antibody (ANCA), Anti-cyclic citrulline peptide antibody (Anti-CCP) etc.- have been encountered. More comprehensive prospective scientific studies should be conducted on the formation of autoantibodies in COVID-19 disease.

Supporting Institution

None

Project Number

None

Thanks

None

References

  • 1. Ministry of Health COVID-19 Guide web address: https://covid19.saglik.gov.tr. Accessed on September 12, 2022.
  • 2. World Health Organization website: https://www.who.int/emergencies/diseases/novel-coronavirus-2019. Accessed on September 12, 2022.
  • 3. Su S, Wong G, Shi W, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends in Microbiology 2016; 24(6): 490-502.
  • 4. Zhou Y, Yang Y, Huang J, Jiang S, Du L. Advances in MERS-CoV Vaccines and Therapeutics Based on the Receptor-Binding Domain. Viruses 2019 Jan 14;11(1).
  • 5. Tan W, Zhao W, Ma X, et al. A Novel Coronavirus Genome Identified in a Cluster of Pneumonia Cases — Wuhan, China 2019−2020, Notes from the Field, China CDC Weekly.
  • 6. Zhang Y-Z, Holmes EC. A genomic perspective on the origin and emergence of SARS-CoV-2. Cell 2020; 181(2): 223-227.
  • 7. Navas Martín SR, Weiss S. Coronavirus replication and pathogenesis: Implications for the recent outbreak of severe acute respiratory syndrome (SARS), and the challenge for vaccine development. J Neurovirol 2004; 10: 75 85.
  • 8. von der Thüsen J, van der Eerden M. Histopathology and genetic susceptibility in COVID 19 pneumonia. Eur J Clin Invest 2020; 50: e13259.
  • 9. Hanley B, Lucas SB, Youd E, Swift B, Osborn M. Autopsy in suspected COVID 19 cases. J Clin Pathol 2020; 73: 239 242.
  • 10. To KK, Tsang OT, Leung WS, et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS CoV 2: An observational cohort study. Lancet Infect Dis 202; 20: 565 574.
  • 11. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395: 497 506.
  • 12. Chen G, Wu D, Guo W, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest 2020; 130: 2620 2629.
  • 13. de Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol 2016; 14(8): 523‐534.
  • 14. Li W, Moore MJ, Vasilieva N, et al. Angiotensinconverting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003; 426(6965): 450‐454.
  • 15. Simmons G, Bertram S, Glowacka I, et al. Different host cell proteases activate the SARS-coronavirus spikeprotein for cell-cell and virus-cell fusion. Virology 2011; 413(2): 265‐274.
  • 16. Sawicki SG, Sawicki DL. Coronavirus transcription: a perspective. Curr Top Microbiol Immunol 2005; 287: 31‐55.
  • 17. Hussain S, Pan J, Chen Y, et al. Identification of novel subgenomic RNAs and noncanonical transcription initiation signals of severe acute respiratory syndrome coronavirus. J Virol 2005; 79(9): 5288‐5295.
  • 18. de Wilde AH, Snijder EJ, Kikkert M, van Hemert MJ. Host Factors in Coronavirus Replication. Curr Top Microbiol Immunol 2018; 419: 1‐42.
  • 19. Groeneveld AB. Vascular pharmacology of acute lung injury and acute respiratory distress syndrome. Vascul Pharmacol 2002; 39(4-5): 247‐256.
  • 20. Rokni M, Ghasemi V, Tavakoli Z. Immune responses and pathogenesis of SARS-CoV-2 during an outbreak in Iran: Comparison with SARS and MERS. Rev Med Virol 2020; 30(3): e2107.
  • 21. Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol 2020; 38(1): 1‐9.
  • 22. Barnes BJ, Adrover JM, Baxter-Stoltzfus A, et al. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J Exp Med 2020; 217(6): e20200652.
  • 23. Li X, Geng M, Peng Y, Meng L, Lu S. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal 2020; 10(2): 102‐108.
  • 24. Yazdanpanah F, Hamblin MR, Rezaei N. The immune system and COVID-19: Friend or foe? Life Sci 2020; 256: 117900.
  • 25. Li G, Chen X, Xu A. Profile of specific antibodies to the SARS-associated coronavirus. N Engl J Med 2003; 349(5): 508‐509.
  • 26. Azkur AK, Akdis M, Azkur D, et al. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy 2020; 10.1111/ all.14364.
  • 27. Abbas AK, Lichtman AH, Pillai S. Basic Immunology: Functions and Disorders of the Immun System (6th Edition). India. Elsevier 2019.
  • 28. Pugliese A. Central and peripheral autoantigen presentation in immune tolerance. Immunology 2004; 111: 138-146.
  • 29. Nemazee D. Mechanisms of central tolerance for B cells. Nature Reviews Immunology 2017; 17: 281-294.
  • 30. Saouaf SJ, Brennan PJ, Shen Y, et al. Mechanisms of peripheral immune tolerance. Immunologic Research 2003; 28: 193-199.
  • 31. Elkon K, Casali P. Nature and functions of autoantibodies. Nat Clin Pract Rheumatol 2008; 4: 491-498.
  • 32. Haugbro K, Nossent JC, Winkler T, et al. Anti-dsDNA antibodies and disease classification in antinuclear antibody positive patients: the role of analytical diversity. Ann Rheum Dis 2004; 63: 386-394.
  • 33. Roggenbuck D, Egerer K, von Landenberg P, et al. Antiphospholipid antibody profiling-Time for a new technical approach?. Autoımmun Rev 2012; 11: 821-826.
  • 34. Chauvineau-Grenier A, Bastard P, Servajean A, et al. Autoantibodies Neutralizing Type I Interferons in 20% of COVID-19 Deaths in a French Hospital. Journl of Clinical Immunology 2022; 42: 459-470.
  • 35. Gao Z-W, Zhang H-Z, Liu C, et al. Autoantibodies in COVID-19: frequency and function. Autoımmun Rev 2021; 20(3): 102754.
  • 36. Salle V. Coronavirus-induced autoimmunity. Clinical Immunology 2021; 226: 108694.
  • 37. Suurmond J, Diamond B. Autoantibodies in systemic autoımmune diseases: specificity and pathogenicity. The Journal of Clinical İnvestigation 2015; 125: 2194-2202.
  • 38. Tsujihata Y, So T, Hashimoto Y,et al. A single amino acid substitution in a self protein is sufficient to trigger autoantibody response. Molecular Immunology 2001; 38: 375-381.
  • 39. Martin-Villa JM, Regueiro JR, De Juan D, et al. T-lymphocyte dysfunctions occuring together with apical gut epithelian cell autoantibodies. Gastroenterology 1991; 101: 390-397.
  • 40. Chen J, Gao K, Wang R, et al. Review of COVID-19 antibody therapies. Annual Review of Biophysics 2021; 50: 1-30.
  • 41. Science Daily. COVID-19 can trigger self-attacking antibodies. https://www.sciencedaily.com/releases/2021/12211230130944.htm
  • 42. Bastard P, Rosen LB, Zhang Q, et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science 2020; 370: eabd4585.
  • 43. Sacchi MC, Tamiazzo S, Stobbione P, et al. SARS-CoV-2 infection s a tirgger of autoımmune response. Clinical Translational Science 2021; 14: 898-907.
  • 44. Woodruff MC, Ramonell RP, Lee FE-H, et al. Clinically identifiable autoreactivity is common in severe SARS-CoV-2 infection. MedRxiv 2020; 10.
  • 45. Seeßle J, Waterboer T, Hippchen T, et al. Persistent symptomps in Adult Patients 1 year After Coronavirus disease 2019 (COVID-19): A Prospective Cohort Study. Clinical Infectious Diseases, Infectious Diseases Society of America 2022; 74: 1191-1198.
  • 46. Hampton T. Autoantibodies may drive COVID-19 blood clots. JAMA 2021; 325: 425.
  • 47. Zuo Y, Estes SK, Ali RA, et al. Prothrombotic antiphospholipid antibodies in COVID-19. MedRxiv 2020.
  • 48. Acosta PL, Byrne AB, Hijano DR, et al. Human type I interferon antiviral effects in respiratory and reemerging viral infections. Journal of Immunology Research 2020; 27.
  • 49. van der Wijst MG, Vazquez SE, Hartoularos GC, et al. Type I interferon autoantibodies are associated with systemic ımmune alterations in patients with COVID-19. Science Translational Medicine 2021; 13: eabh2624.
  • 50. Liu Y, Ebinger JE, Mostafa R, et al. Pradoxical sex-specific patterns of autoantibody response to SARS-CoV-2 infection. Journal of Translational Medicine 2021; 19: 1-13.
  • 51. Dotan A, Shoenfeld Y. Perspectives on vaccine induced thrombotic thrombocytopenia. Journal of Autoimmunity 2021; 121: 102663.
Year 2022, , 30 - 38, 29.12.2022
https://doi.org/10.56484/iamr.1197191

Abstract

Project Number

None

References

  • 1. Ministry of Health COVID-19 Guide web address: https://covid19.saglik.gov.tr. Accessed on September 12, 2022.
  • 2. World Health Organization website: https://www.who.int/emergencies/diseases/novel-coronavirus-2019. Accessed on September 12, 2022.
  • 3. Su S, Wong G, Shi W, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends in Microbiology 2016; 24(6): 490-502.
  • 4. Zhou Y, Yang Y, Huang J, Jiang S, Du L. Advances in MERS-CoV Vaccines and Therapeutics Based on the Receptor-Binding Domain. Viruses 2019 Jan 14;11(1).
  • 5. Tan W, Zhao W, Ma X, et al. A Novel Coronavirus Genome Identified in a Cluster of Pneumonia Cases — Wuhan, China 2019−2020, Notes from the Field, China CDC Weekly.
  • 6. Zhang Y-Z, Holmes EC. A genomic perspective on the origin and emergence of SARS-CoV-2. Cell 2020; 181(2): 223-227.
  • 7. Navas Martín SR, Weiss S. Coronavirus replication and pathogenesis: Implications for the recent outbreak of severe acute respiratory syndrome (SARS), and the challenge for vaccine development. J Neurovirol 2004; 10: 75 85.
  • 8. von der Thüsen J, van der Eerden M. Histopathology and genetic susceptibility in COVID 19 pneumonia. Eur J Clin Invest 2020; 50: e13259.
  • 9. Hanley B, Lucas SB, Youd E, Swift B, Osborn M. Autopsy in suspected COVID 19 cases. J Clin Pathol 2020; 73: 239 242.
  • 10. To KK, Tsang OT, Leung WS, et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS CoV 2: An observational cohort study. Lancet Infect Dis 202; 20: 565 574.
  • 11. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395: 497 506.
  • 12. Chen G, Wu D, Guo W, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest 2020; 130: 2620 2629.
  • 13. de Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol 2016; 14(8): 523‐534.
  • 14. Li W, Moore MJ, Vasilieva N, et al. Angiotensinconverting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003; 426(6965): 450‐454.
  • 15. Simmons G, Bertram S, Glowacka I, et al. Different host cell proteases activate the SARS-coronavirus spikeprotein for cell-cell and virus-cell fusion. Virology 2011; 413(2): 265‐274.
  • 16. Sawicki SG, Sawicki DL. Coronavirus transcription: a perspective. Curr Top Microbiol Immunol 2005; 287: 31‐55.
  • 17. Hussain S, Pan J, Chen Y, et al. Identification of novel subgenomic RNAs and noncanonical transcription initiation signals of severe acute respiratory syndrome coronavirus. J Virol 2005; 79(9): 5288‐5295.
  • 18. de Wilde AH, Snijder EJ, Kikkert M, van Hemert MJ. Host Factors in Coronavirus Replication. Curr Top Microbiol Immunol 2018; 419: 1‐42.
  • 19. Groeneveld AB. Vascular pharmacology of acute lung injury and acute respiratory distress syndrome. Vascul Pharmacol 2002; 39(4-5): 247‐256.
  • 20. Rokni M, Ghasemi V, Tavakoli Z. Immune responses and pathogenesis of SARS-CoV-2 during an outbreak in Iran: Comparison with SARS and MERS. Rev Med Virol 2020; 30(3): e2107.
  • 21. Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol 2020; 38(1): 1‐9.
  • 22. Barnes BJ, Adrover JM, Baxter-Stoltzfus A, et al. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J Exp Med 2020; 217(6): e20200652.
  • 23. Li X, Geng M, Peng Y, Meng L, Lu S. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal 2020; 10(2): 102‐108.
  • 24. Yazdanpanah F, Hamblin MR, Rezaei N. The immune system and COVID-19: Friend or foe? Life Sci 2020; 256: 117900.
  • 25. Li G, Chen X, Xu A. Profile of specific antibodies to the SARS-associated coronavirus. N Engl J Med 2003; 349(5): 508‐509.
  • 26. Azkur AK, Akdis M, Azkur D, et al. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy 2020; 10.1111/ all.14364.
  • 27. Abbas AK, Lichtman AH, Pillai S. Basic Immunology: Functions and Disorders of the Immun System (6th Edition). India. Elsevier 2019.
  • 28. Pugliese A. Central and peripheral autoantigen presentation in immune tolerance. Immunology 2004; 111: 138-146.
  • 29. Nemazee D. Mechanisms of central tolerance for B cells. Nature Reviews Immunology 2017; 17: 281-294.
  • 30. Saouaf SJ, Brennan PJ, Shen Y, et al. Mechanisms of peripheral immune tolerance. Immunologic Research 2003; 28: 193-199.
  • 31. Elkon K, Casali P. Nature and functions of autoantibodies. Nat Clin Pract Rheumatol 2008; 4: 491-498.
  • 32. Haugbro K, Nossent JC, Winkler T, et al. Anti-dsDNA antibodies and disease classification in antinuclear antibody positive patients: the role of analytical diversity. Ann Rheum Dis 2004; 63: 386-394.
  • 33. Roggenbuck D, Egerer K, von Landenberg P, et al. Antiphospholipid antibody profiling-Time for a new technical approach?. Autoımmun Rev 2012; 11: 821-826.
  • 34. Chauvineau-Grenier A, Bastard P, Servajean A, et al. Autoantibodies Neutralizing Type I Interferons in 20% of COVID-19 Deaths in a French Hospital. Journl of Clinical Immunology 2022; 42: 459-470.
  • 35. Gao Z-W, Zhang H-Z, Liu C, et al. Autoantibodies in COVID-19: frequency and function. Autoımmun Rev 2021; 20(3): 102754.
  • 36. Salle V. Coronavirus-induced autoimmunity. Clinical Immunology 2021; 226: 108694.
  • 37. Suurmond J, Diamond B. Autoantibodies in systemic autoımmune diseases: specificity and pathogenicity. The Journal of Clinical İnvestigation 2015; 125: 2194-2202.
  • 38. Tsujihata Y, So T, Hashimoto Y,et al. A single amino acid substitution in a self protein is sufficient to trigger autoantibody response. Molecular Immunology 2001; 38: 375-381.
  • 39. Martin-Villa JM, Regueiro JR, De Juan D, et al. T-lymphocyte dysfunctions occuring together with apical gut epithelian cell autoantibodies. Gastroenterology 1991; 101: 390-397.
  • 40. Chen J, Gao K, Wang R, et al. Review of COVID-19 antibody therapies. Annual Review of Biophysics 2021; 50: 1-30.
  • 41. Science Daily. COVID-19 can trigger self-attacking antibodies. https://www.sciencedaily.com/releases/2021/12211230130944.htm
  • 42. Bastard P, Rosen LB, Zhang Q, et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science 2020; 370: eabd4585.
  • 43. Sacchi MC, Tamiazzo S, Stobbione P, et al. SARS-CoV-2 infection s a tirgger of autoımmune response. Clinical Translational Science 2021; 14: 898-907.
  • 44. Woodruff MC, Ramonell RP, Lee FE-H, et al. Clinically identifiable autoreactivity is common in severe SARS-CoV-2 infection. MedRxiv 2020; 10.
  • 45. Seeßle J, Waterboer T, Hippchen T, et al. Persistent symptomps in Adult Patients 1 year After Coronavirus disease 2019 (COVID-19): A Prospective Cohort Study. Clinical Infectious Diseases, Infectious Diseases Society of America 2022; 74: 1191-1198.
  • 46. Hampton T. Autoantibodies may drive COVID-19 blood clots. JAMA 2021; 325: 425.
  • 47. Zuo Y, Estes SK, Ali RA, et al. Prothrombotic antiphospholipid antibodies in COVID-19. MedRxiv 2020.
  • 48. Acosta PL, Byrne AB, Hijano DR, et al. Human type I interferon antiviral effects in respiratory and reemerging viral infections. Journal of Immunology Research 2020; 27.
  • 49. van der Wijst MG, Vazquez SE, Hartoularos GC, et al. Type I interferon autoantibodies are associated with systemic ımmune alterations in patients with COVID-19. Science Translational Medicine 2021; 13: eabh2624.
  • 50. Liu Y, Ebinger JE, Mostafa R, et al. Pradoxical sex-specific patterns of autoantibody response to SARS-CoV-2 infection. Journal of Translational Medicine 2021; 19: 1-13.
  • 51. Dotan A, Shoenfeld Y. Perspectives on vaccine induced thrombotic thrombocytopenia. Journal of Autoimmunity 2021; 121: 102663.
There are 51 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section REVIEW
Authors

Zeynep Ayaydın 0000-0002-4701-1212

Nida Özcan 0000-0001-6898-7516

Selahattin Atmaca 0000-0002-2730-5790

Project Number None
Publication Date December 29, 2022
Published in Issue Year 2022

Cite

APA Ayaydın, Z., Özcan, N., & Atmaca, S. (2022). COVID-19 Associated Autoimmunity: “Are Autoantibodies Neglected?”. International Archives of Medical Research, 14(2), 30-38. https://doi.org/10.56484/iamr.1197191
AMA Ayaydın Z, Özcan N, Atmaca S.COVID-19 Associated Autoimmunity: “Are Autoantibodies Neglected?.” IAMR. December 2022;14(2):30-38. doi:10.56484/iamr.1197191
Chicago Ayaydın, Zeynep, Nida Özcan, and Selahattin Atmaca. “COVID-19 Associated Autoimmunity: ‘Are Autoantibodies Neglected?’”. International Archives of Medical Research 14, no. 2 (December 2022): 30-38. https://doi.org/10.56484/iamr.1197191.
EndNote Ayaydın Z, Özcan N, Atmaca S (December 1, 2022) COVID-19 Associated Autoimmunity: “Are Autoantibodies Neglected?”. International Archives of Medical Research 14 2 30–38.
IEEE Z. Ayaydın, N. Özcan, and S. Atmaca, “COVID-19 Associated Autoimmunity: ‘Are Autoantibodies Neglected?’”, IAMR, vol. 14, no. 2, pp. 30–38, 2022, doi: 10.56484/iamr.1197191.
ISNAD Ayaydın, Zeynep et al. “COVID-19 Associated Autoimmunity: ‘Are Autoantibodies Neglected?’”. International Archives of Medical Research 14/2 (December 2022), 30-38. https://doi.org/10.56484/iamr.1197191.
JAMA Ayaydın Z, Özcan N, Atmaca S. COVID-19 Associated Autoimmunity: “Are Autoantibodies Neglected?”. IAMR. 2022;14:30–38.
MLA Ayaydın, Zeynep et al. “COVID-19 Associated Autoimmunity: ‘Are Autoantibodies Neglected?’”. International Archives of Medical Research, vol. 14, no. 2, 2022, pp. 30-38, doi:10.56484/iamr.1197191.
Vancouver Ayaydın Z, Özcan N, Atmaca S. COVID-19 Associated Autoimmunity: “Are Autoantibodies Neglected?”. IAMR. 2022;14(2):30-8.

All articles published by DUJE are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited. 24456