Research Article
BibTex RIS Cite
Year 2022, , 161 - 166, 15.12.2022
https://doi.org/10.35860/iarej.1148320

Abstract

References

  • 1. Ruan, K., et al., Interfacial thermal resistance in thermally conductive polymer composites: a review. Composites Communications, 2020. 22: p. 100518.
  • 2. Yang, X., et al., A review on thermally conductive polymeric composites: classification, measurement, model and equations, mechanism and fabrication methods. Advanced composites and hybrid materials, 2018. 1(2): p. 207-230.
  • 3. Guo, Y., et al., Factors affecting thermal conductivities of the polymers and polymer composites: A review. Composites Science and Technology, 2020. 193: p. 108134.
  • 4. Leung, S.N., Thermally conductive polymer composites and nanocomposites: Processing-structure-property relationships. Composites Part B: Engineering, 2018. 150: p. 78-92.
  • 5. Liu, C., et al., ZnO nanowire-decorated Al2O3 hybrids for improving the thermal conductivity of polymer composites. Journal of Materials Chemistry C, 2020. 8(16): p. 5380-5388.
  • 6. Cakmak, N.K., H.H. Durmazucar, and K. Yapici, A numerical study of the natural convection of Al2O3-EG nanofluid in a square enclosure and impacts and a comparison of various viscosity and thermal conductivity models. International Advanced Researches and Engineering Journal, 2021. 5(2): p. 218-230.
  • 7. Sanker, S.B. and R. Baby, Phase change material based thermal management of lithium ion batteries: A review on thermal performance of various thermal conductivity enhancers. Journal of Energy Storage, 2022. 50: p. 104606.
  • 8. Jouni, M., et al., A representative and comprehensive review of the electrical and thermal properties of polymer composites with carbon nanotube and other nanoparticle fillers. Polymer International, 2017. 66(9): p. 1237-1251.
  • 9. Zhang, J., et al., A facile method to prepare flexible boron nitride/poly (vinyl alcohol) composites with enhanced thermal conductivity. Composites Science and Technology, 2017. 149: p. 41-47.
  • 10. Gou, B., et al., Polymer‐based nanocomposites with ultra‐high in‐plane thermal conductivity via highly oriented boron nitride nanosheets. Polymer Composites, 2022. 43(4): p. 2341-2349.
  • 11. Sun, Z., et al. Large-scale production of boron nitride nanosheets-based epoxy nanocomposites with ultrahigh through-plane thermal conductivity for electronic encapsulation. in 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC). 2022. IEEE.
  • 12. Liu, D., et al., Improving in-plane and out-of-plane thermal conductivity of polyimide/boron nitride film with reduced graphene oxide by a moving magnetic field induction. Composites Science and Technology, 2022. 220: p. 109292.
  • 13. Zhang, R.C., et al., Flexible and Ultrahigh Through‐Plane Thermally‐Conductive Polyethylene/Boron Nitride Nanocomposite Films. Macromolecular Materials and Engineering, 2022. 307(1): p. 2100695.
  • 14. Hu, Q., et al., Oriented BN/Silicone rubber composite thermal interface materials with high out-of-plane thermal conductivity and flexibility. Composites Part A: Applied Science and Manufacturing, 2022. 152: p. 106681.
  • 15. Su, Z., et al., Synergistic enhancement of anisotropic thermal transport flexible polymer composites filled with multi-layer graphene (mG) and mussel-inspiring modified hexagonal boron nitride (h-BN). Composites Part A: Applied Science and Manufacturing, 2018. 111: p. 12-22.
  • 16. Sun, Y., et al., A new anisotropic thermal conductivity equation for h-BN/polymer composites using finite element analysis. International Journal of Heat and Mass Transfer, 2020. 160: p. 120157.
  • 17. Liu, B., et al., Stochastic integrated machine learning based multiscale approach for the prediction of the thermal conductivity in carbon nanotube reinforced polymeric composites. Composites Science and Technology, 2022. 224: p. 109425.
  • 18. Maxwell, J.C., A treatise on electricity and magnetism. Vol. 1. 1881: Clarendon press.
  • 19. Hamilton, R. and O. Crosser, Thermal conductivity of heterogeneous two-component systems. Industrial & Engineering chemistry fundamentals, 1962. 1(3): p. 187-191.
  • 20. Nielsen, L.E., Thermal conductivity of particulate‐filled polymers. Journal of applied polymer science, 1973. 17(12): p. 3819-3820.
  • 21. Agari, Y., et al., Thermal conductivity of a polymer composite filled with mixtures of particles. Journal of Applied Polymer Science, 1987. 34(4): p. 1429-1437.
  • 22. Bruggeman, V.D., Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Annalen der physik, 1935. 416(7): p. 636-664.
  • 23. Feng, M., et al., Largely improved thermal conductivity of HDPE composites by building a 3D hybrid fillers network. Composites Science and Technology, 2021. 206: p. 108666.
  • 24. Kucukdogan, N., L. Aydin, and M. Sutcu, Theoretical and empirical thermal conductivity models of red mud filled polymer composites. Thermochimica Acta, 2018. 665: p. 76-84.

Synergistic effect of h-BN on thermal conductivity of polymer composites

Year 2022, , 161 - 166, 15.12.2022
https://doi.org/10.35860/iarej.1148320

Abstract

The conductivity characteristics of polymers and polymer composites have become more significant recently. Good heat dissipation is required in many applications, such as circuit boards and heat exchangers, so it is essential to develop the thermal conductivity characteristics of the materials. The micro-fillers have been replaced with nano or hybrid fillers to increase the low thermal conductivity of the polymer. Hexagonal boron nitride (h-BN) and multi-walled carbon nanotubes (MW-CNT), both of which have good conductivity properties, are two popular filling materials. The presence of hydroxyl and amino active groups at the corners of the hexagonal structure of BN improves the thermal conductivity properties of the polymer composite. In addition, it shows high thermal conductivity behavior in polymer composite structures with BN and MW-CNT. It is essential to demonstrate the effects of the volume fraction of additives on the thermal properties of composites with various approaches. In this study, the thermal conductivity behaviors of h-BN/high-density polyethylene and h-BN/MW-CNT/high-density polyethylene composites are demonstrated using the theoretical Bruggeman model, which is based on the assumption that there are constant infinitesimal changes in the material so that there is an interaction between particles. The coefficient of determination (R²) between the thermal conductivity values of the composites and the predictions of the Bruggeman theoretical model is greater than 0.98. This way, the synergetic effect of h-BN and MW-CNT/h-BN additives on thermal conductivity has been theoretically proven.

References

  • 1. Ruan, K., et al., Interfacial thermal resistance in thermally conductive polymer composites: a review. Composites Communications, 2020. 22: p. 100518.
  • 2. Yang, X., et al., A review on thermally conductive polymeric composites: classification, measurement, model and equations, mechanism and fabrication methods. Advanced composites and hybrid materials, 2018. 1(2): p. 207-230.
  • 3. Guo, Y., et al., Factors affecting thermal conductivities of the polymers and polymer composites: A review. Composites Science and Technology, 2020. 193: p. 108134.
  • 4. Leung, S.N., Thermally conductive polymer composites and nanocomposites: Processing-structure-property relationships. Composites Part B: Engineering, 2018. 150: p. 78-92.
  • 5. Liu, C., et al., ZnO nanowire-decorated Al2O3 hybrids for improving the thermal conductivity of polymer composites. Journal of Materials Chemistry C, 2020. 8(16): p. 5380-5388.
  • 6. Cakmak, N.K., H.H. Durmazucar, and K. Yapici, A numerical study of the natural convection of Al2O3-EG nanofluid in a square enclosure and impacts and a comparison of various viscosity and thermal conductivity models. International Advanced Researches and Engineering Journal, 2021. 5(2): p. 218-230.
  • 7. Sanker, S.B. and R. Baby, Phase change material based thermal management of lithium ion batteries: A review on thermal performance of various thermal conductivity enhancers. Journal of Energy Storage, 2022. 50: p. 104606.
  • 8. Jouni, M., et al., A representative and comprehensive review of the electrical and thermal properties of polymer composites with carbon nanotube and other nanoparticle fillers. Polymer International, 2017. 66(9): p. 1237-1251.
  • 9. Zhang, J., et al., A facile method to prepare flexible boron nitride/poly (vinyl alcohol) composites with enhanced thermal conductivity. Composites Science and Technology, 2017. 149: p. 41-47.
  • 10. Gou, B., et al., Polymer‐based nanocomposites with ultra‐high in‐plane thermal conductivity via highly oriented boron nitride nanosheets. Polymer Composites, 2022. 43(4): p. 2341-2349.
  • 11. Sun, Z., et al. Large-scale production of boron nitride nanosheets-based epoxy nanocomposites with ultrahigh through-plane thermal conductivity for electronic encapsulation. in 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC). 2022. IEEE.
  • 12. Liu, D., et al., Improving in-plane and out-of-plane thermal conductivity of polyimide/boron nitride film with reduced graphene oxide by a moving magnetic field induction. Composites Science and Technology, 2022. 220: p. 109292.
  • 13. Zhang, R.C., et al., Flexible and Ultrahigh Through‐Plane Thermally‐Conductive Polyethylene/Boron Nitride Nanocomposite Films. Macromolecular Materials and Engineering, 2022. 307(1): p. 2100695.
  • 14. Hu, Q., et al., Oriented BN/Silicone rubber composite thermal interface materials with high out-of-plane thermal conductivity and flexibility. Composites Part A: Applied Science and Manufacturing, 2022. 152: p. 106681.
  • 15. Su, Z., et al., Synergistic enhancement of anisotropic thermal transport flexible polymer composites filled with multi-layer graphene (mG) and mussel-inspiring modified hexagonal boron nitride (h-BN). Composites Part A: Applied Science and Manufacturing, 2018. 111: p. 12-22.
  • 16. Sun, Y., et al., A new anisotropic thermal conductivity equation for h-BN/polymer composites using finite element analysis. International Journal of Heat and Mass Transfer, 2020. 160: p. 120157.
  • 17. Liu, B., et al., Stochastic integrated machine learning based multiscale approach for the prediction of the thermal conductivity in carbon nanotube reinforced polymeric composites. Composites Science and Technology, 2022. 224: p. 109425.
  • 18. Maxwell, J.C., A treatise on electricity and magnetism. Vol. 1. 1881: Clarendon press.
  • 19. Hamilton, R. and O. Crosser, Thermal conductivity of heterogeneous two-component systems. Industrial & Engineering chemistry fundamentals, 1962. 1(3): p. 187-191.
  • 20. Nielsen, L.E., Thermal conductivity of particulate‐filled polymers. Journal of applied polymer science, 1973. 17(12): p. 3819-3820.
  • 21. Agari, Y., et al., Thermal conductivity of a polymer composite filled with mixtures of particles. Journal of Applied Polymer Science, 1987. 34(4): p. 1429-1437.
  • 22. Bruggeman, V.D., Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Annalen der physik, 1935. 416(7): p. 636-664.
  • 23. Feng, M., et al., Largely improved thermal conductivity of HDPE composites by building a 3D hybrid fillers network. Composites Science and Technology, 2021. 206: p. 108666.
  • 24. Kucukdogan, N., L. Aydin, and M. Sutcu, Theoretical and empirical thermal conductivity models of red mud filled polymer composites. Thermochimica Acta, 2018. 665: p. 76-84.
There are 24 citations in total.

Details

Primary Language English
Subjects Engineering, Composite and Hybrid Materials
Journal Section Research Articles
Authors

Nilay Küçükdoğan Öztürk 0000-0003-4375-0752

Publication Date December 15, 2022
Submission Date July 25, 2022
Acceptance Date November 1, 2022
Published in Issue Year 2022

Cite

APA Küçükdoğan Öztürk, N. (2022). Synergistic effect of h-BN on thermal conductivity of polymer composites. International Advanced Researches and Engineering Journal, 6(3), 161-166. https://doi.org/10.35860/iarej.1148320
AMA Küçükdoğan Öztürk N. Synergistic effect of h-BN on thermal conductivity of polymer composites. Int. Adv. Res. Eng. J. December 2022;6(3):161-166. doi:10.35860/iarej.1148320
Chicago Küçükdoğan Öztürk, Nilay. “Synergistic Effect of H-BN on Thermal Conductivity of Polymer Composites”. International Advanced Researches and Engineering Journal 6, no. 3 (December 2022): 161-66. https://doi.org/10.35860/iarej.1148320.
EndNote Küçükdoğan Öztürk N (December 1, 2022) Synergistic effect of h-BN on thermal conductivity of polymer composites. International Advanced Researches and Engineering Journal 6 3 161–166.
IEEE N. Küçükdoğan Öztürk, “Synergistic effect of h-BN on thermal conductivity of polymer composites”, Int. Adv. Res. Eng. J., vol. 6, no. 3, pp. 161–166, 2022, doi: 10.35860/iarej.1148320.
ISNAD Küçükdoğan Öztürk, Nilay. “Synergistic Effect of H-BN on Thermal Conductivity of Polymer Composites”. International Advanced Researches and Engineering Journal 6/3 (December 2022), 161-166. https://doi.org/10.35860/iarej.1148320.
JAMA Küçükdoğan Öztürk N. Synergistic effect of h-BN on thermal conductivity of polymer composites. Int. Adv. Res. Eng. J. 2022;6:161–166.
MLA Küçükdoğan Öztürk, Nilay. “Synergistic Effect of H-BN on Thermal Conductivity of Polymer Composites”. International Advanced Researches and Engineering Journal, vol. 6, no. 3, 2022, pp. 161-6, doi:10.35860/iarej.1148320.
Vancouver Küçükdoğan Öztürk N. Synergistic effect of h-BN on thermal conductivity of polymer composites. Int. Adv. Res. Eng. J. 2022;6(3):161-6.



Creative Commons License

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.