Research Article
BibTex RIS Cite
Year 2023, , 178 - 184, 15.12.2023
https://doi.org/10.35860/iarej.1336567

Abstract

References

  • 1. Pibarot, P., H.C. Herrmann, C. Wu, R. T. Hahn, C. M., Otto, and A. E. Abbas, Standardized definitions for bioprosthetic valve dysfunction following aortic or mitral valve replacement: JACC state-of-the-art review. Journal of the American College of Cardiology, 2022. 80.5: p. 545-561.
  • 2. Dikshit, A., A. E. Anikanov, P. Petukhov, A. Rudic, G. Woiceshyn, and C. Jurgensen, Sand Screen with Check-Valve Inflow Control Devices. SPE Drilling & Completion, 2020. 35.04: p. 707-713.
  • 3. Pan, Q. H., Z. Huang, B. Huang, R. Li, B. Wang, and Z. Feng, Development of a piezoelectric pump with ball valve structure. Journal of Intelligent Material Systems and Structures, 2021. 32.18-19: p. 2289-2299.
  • 4. Jung, C. and J. K. Sung, Investigation into the effects of passive check valves on the thermal performance of pulsating heat pipes. International Journal of Heat and Mass Transfer, 2023. 204: 123850.
  • 5. Li, S. T., H. Shen, M. Yu, and Z. Lei, Analysis and Optimization of the Opening Dynamic Characteristics of Molten Salt Check Valves for Concentrating Solar Power. Applied Sciences, 2023. 13.5: 3146.
  • 6. Kim, N. and J. Yong-Hoon, An investigation of pressure build-up effects due to check valve’s closing characteristics using dynamic mesh techniques of CFD. Annals of Nuclear Energy, 2021. 152: 107996.
  • 7. Mao, Z., Y. Kazuhiro, and K. Joon-wan, A micro vertically-allocated SU-8 check valve and its characteristics. Microsystem Technologies, 2019. 25: p. 245-255.
  • 8. Li, S. T., H. Shen, M. Yu, and Z. Lei, Analysis and Optimization of the Opening Dynamic Characteristics of Molten Salt Check Valves for Concentrating Solar Power. Applied Sciences, 2023. 13.5: p. 3146.
  • 9. Zhao, R., L. Weihua, and Z. Weilin, Unsteady characteristic and flow mechanism of a scroll compressor with novel discharge port for electric vehicle air conditioning. International Journal of Refrigeration, 2020. 118: p. 403-414.
  • 10. Shoykhet, K., B. Ken, and W. D. Michael, Modern HPLC pumps: perspectives, principles, and practices. LC GC North America, 2019. 37.6: p. 374-384.
  • 11. Qian, J., C. W. Hou, X. J. Li, and Z. J. Jin, Actuation mechanism of microvalves: A review. Micromachines, 2020. 11.2: p. 172.
  • 12. Chamas, A., L. Qi, H. S. Mehta, J. A. Sears, S. L. Scott, E. Walter, and D. W. Hoyt, High temperature/pressure MAS-NMR for the study of dynamic processes in mixed phase systems. Magnetic Resonance Imaging, 2019. 56: p. 37-44.
  • 13. Birkitt, K., K. Loo-Morrey, M. C. Sanchez, and L. O'Sullivan, Materials aspects associated with the addition of up to 20 mol% hydrogen into an existing natural gas distribution network. International Journal of Hydrogen Energy, 2021. 46.23: p. 12290-12299.
  • 14. Lin, Z., X. Sun, T. Yu, Y. Zhang, Y. Li, and Z. Zhu, Gas–solid two-phase flow and erosion calculation of gate valve based on the CFD-DEM model. Powder Technology, 2020. 366: p. 395-407.
  • 15. Filo, G., L. Edward. and R. Janusz, Design and flow analysis of an adjustable check valve by means of CFD method. Energies, 2021. 14.8: p. 2237.
  • 16. Żyłka, M., N. Marszałek. and W. Żyłka, Numerical simulation of pneumatic throttle check valve using computational fluid dynamics (CFD). Scientific Reports, 2023.13(1): p. 2475.
  • 17. Bhowmik, P. K. and Y. S. Kune, Flow mapping using 3D full-scale CFD simulation and hydrodynamic experiments of an ultra-supercritical turbine’s combined valve for nuclear power plant. International Journal of Energy and Environmental Engineering, 2021. 12.3: p. 365-381.
  • 18. Szpica, D., G. Mieczkowski, A. Borawski, V. Leisis, S. Diliunas, and T. Pilkaite, The computational fluid dynamics (CFD) analysis of the pressure sensor used in pulse-operated low-pressure gas-phase solenoid valve measurements. Sensors, 2021. 21.24: p. 8287.
  • 19. Žic, E., B. Patrik. and L. Luka, Hydraulic analysis of gate valve using computational fluid dynamics (CFD). Scientific Review Engineering and Environmental Sciences, 2020. 29.3: p. 275-288.
  • 20. Imam, H., M. Sabreen, K. Pibars, and W. M. M. Soltan. Studying the hydraulic characteristics of UPVC butterfly valve by CFD technique. Plant Archives, 2019. 19.2: p. 377-383.
  • 21. Buczkowski, D. and G. Nowak. Increase in tuning ability of a car shock absorber valve using CFD. Journal of Applied Fluid Mechanics, 2019. 12.6: p. 1847-1854.
  • 22. Jakobsen, J. H. and R. H. Michael, CFD assisted steady-state modelling of restrictive counterbalance valves. International Journal of Fluid Power, 2020. p. 119-146.
  • 23. Cao, Y., L. Zhou, C. Ou, H. Fang, and D. Liu, 3D CFD simulation and analysis of transient flow in a water pipeline. AQUA—Water Infrastructure, Ecosystems and Society, 2022. 71.6: p. 751-767.
  • 24. Zhang, Z., J. Li. and Y. Lixin, Numerical simulation study on the opening process of the atmospheric relief valve. Nuclear Engineering and Design, 2019. 351: p. 106-115.
  • 25. Yedekçioğlu, F., S. Akyıldız, and Z. Parlak, Numerical investigation of aerodynamic performance and noise characteristic of air multiplier bladeless fan. International Advanced Researches and Engineering Journal, 2023. p. 13-22.
  • 26. Arsenoaia, V., V. Vlâduţ, I. Ţenu, I. Voicea, G. Moiceanu, and, P. M. Cârlescu, Mathematical Modeling and Numerical Simulation of the Drying Process of Seeds in a Pilot Plant. INMATEH-Agricultural Engineering, 2019. 57(1): p. 55-62.
  • 27. Malekjani, N. and S.M. Jafari, Simulation of food drying processes by Computational Fluid Dynamics (CFD); recent advances and approaches. Trends in Food Science & Technology, 2019. 78: p. 206-223.
  • 28. Filo, G., L. Edward, and R. Janusz, Flow analysis of a switching valve with innovative poppet head geometry by means of CFD method. Flow Measurement and Instrumentation, 2019. 70: p. 101643.
  • 29. Guzei, D. V., A. V. Minakov, and V. Y. Rudyak, On efficiency of convective heat transfer of nanofluids in laminar flow regime. International Journal of Heat and Mass Transfer, 2019. 139: p. 180-192.
  • 30. Li, R., Q. Huang, F. Huo, K. Fan, W. Li, and D. Zhang, Effect of shear on the thickness of wax deposit under laminar flow regime. Journal of Petroleum Science and Engineering, 2019. 181: p. 106212.
  • 31. Shi, H., N. D. M. Raimondi, D. F. Fletcher, M. Cabassud, and C. Gourdon, Numerical study of heat transfer in square millimetric zigzag channels in the laminar flow regime. Chemical Engineering and Processing-Process Intensification, 2019. 144: p. 107624.
  • 32. Cruz, R., A. Alejandro, G. E. Colin, R. J. Téllez, and H. A. Magaña, Performance Evaluation of Austempered Ductile Iron Camshaft Low Alloyed with Vanadium on an Electric Spin Rig Test. Metals, 2023. 13.2: p. 198.
  • 33. Franzen, D., P. Björn, and B. P. Andreas, Influence of graphite-phase parameters on the mechanical properties of high-silicon ductile iron. International Journal of Metalcasting, 2023. 17.1: p. 4-21.
  • 34. Upadhyay, S. and K. S. Kuldeep, Effect of Cu and Mo addition on mechanical properties and microstructure of grey cast iron: An overview. Materials Today: Proceedings, 2020. 26: p. 2462-2470.
  • 35. Li, Y., S. Dong, P. He, S. Yan, E. Li, X. Liu, and B. Xu, Microstructure characteristics and mechanical properties of new-type FeNiCr laser cladding alloy coating on nodular cast iron. Journal of Materials Processing Technology, 2019. 269: p. 163-171.

Hydrodynamic behaviour improvement of check valves through CFD analysis

Year 2023, , 178 - 184, 15.12.2023
https://doi.org/10.35860/iarej.1336567

Abstract

In this article, the computer assisted design, flow simulation, optimization of production parameters and unique design prototype manufacturing of a check valve with 16 bar pressure, 5 m/s flow rate and 52000 m3/h flow coefficients, which have never been achieved before in the valve sector, were presented to the attention of the readers. Check valves have a critical role that do not allow reverse flow of the fluid passing through them and are generally designed to secure the pipeline. A small mistake in design may cause great damage in the system. For this reason, a new product of which the disc material exposed to 5 m/s fluid velocity, the body subjected to 16 bar pressure and the system with a flow coefficient of 52000 m3/h were designed by the Solidworks, the flow was simulated with CFD (Computational Fluid Dynamics), and the mechanical resistance was analysed by FEA (Finite Element Analysis). Fluent, CFD and mechanical modules of ANSYS were used to define the parameters of the design. The manufactures of the products designed in the computer environment have been produced by casting method with a 45% ferritic microstructure and impact resistance twice as high as the standard requirements have been implemented.

References

  • 1. Pibarot, P., H.C. Herrmann, C. Wu, R. T. Hahn, C. M., Otto, and A. E. Abbas, Standardized definitions for bioprosthetic valve dysfunction following aortic or mitral valve replacement: JACC state-of-the-art review. Journal of the American College of Cardiology, 2022. 80.5: p. 545-561.
  • 2. Dikshit, A., A. E. Anikanov, P. Petukhov, A. Rudic, G. Woiceshyn, and C. Jurgensen, Sand Screen with Check-Valve Inflow Control Devices. SPE Drilling & Completion, 2020. 35.04: p. 707-713.
  • 3. Pan, Q. H., Z. Huang, B. Huang, R. Li, B. Wang, and Z. Feng, Development of a piezoelectric pump with ball valve structure. Journal of Intelligent Material Systems and Structures, 2021. 32.18-19: p. 2289-2299.
  • 4. Jung, C. and J. K. Sung, Investigation into the effects of passive check valves on the thermal performance of pulsating heat pipes. International Journal of Heat and Mass Transfer, 2023. 204: 123850.
  • 5. Li, S. T., H. Shen, M. Yu, and Z. Lei, Analysis and Optimization of the Opening Dynamic Characteristics of Molten Salt Check Valves for Concentrating Solar Power. Applied Sciences, 2023. 13.5: 3146.
  • 6. Kim, N. and J. Yong-Hoon, An investigation of pressure build-up effects due to check valve’s closing characteristics using dynamic mesh techniques of CFD. Annals of Nuclear Energy, 2021. 152: 107996.
  • 7. Mao, Z., Y. Kazuhiro, and K. Joon-wan, A micro vertically-allocated SU-8 check valve and its characteristics. Microsystem Technologies, 2019. 25: p. 245-255.
  • 8. Li, S. T., H. Shen, M. Yu, and Z. Lei, Analysis and Optimization of the Opening Dynamic Characteristics of Molten Salt Check Valves for Concentrating Solar Power. Applied Sciences, 2023. 13.5: p. 3146.
  • 9. Zhao, R., L. Weihua, and Z. Weilin, Unsteady characteristic and flow mechanism of a scroll compressor with novel discharge port for electric vehicle air conditioning. International Journal of Refrigeration, 2020. 118: p. 403-414.
  • 10. Shoykhet, K., B. Ken, and W. D. Michael, Modern HPLC pumps: perspectives, principles, and practices. LC GC North America, 2019. 37.6: p. 374-384.
  • 11. Qian, J., C. W. Hou, X. J. Li, and Z. J. Jin, Actuation mechanism of microvalves: A review. Micromachines, 2020. 11.2: p. 172.
  • 12. Chamas, A., L. Qi, H. S. Mehta, J. A. Sears, S. L. Scott, E. Walter, and D. W. Hoyt, High temperature/pressure MAS-NMR for the study of dynamic processes in mixed phase systems. Magnetic Resonance Imaging, 2019. 56: p. 37-44.
  • 13. Birkitt, K., K. Loo-Morrey, M. C. Sanchez, and L. O'Sullivan, Materials aspects associated with the addition of up to 20 mol% hydrogen into an existing natural gas distribution network. International Journal of Hydrogen Energy, 2021. 46.23: p. 12290-12299.
  • 14. Lin, Z., X. Sun, T. Yu, Y. Zhang, Y. Li, and Z. Zhu, Gas–solid two-phase flow and erosion calculation of gate valve based on the CFD-DEM model. Powder Technology, 2020. 366: p. 395-407.
  • 15. Filo, G., L. Edward. and R. Janusz, Design and flow analysis of an adjustable check valve by means of CFD method. Energies, 2021. 14.8: p. 2237.
  • 16. Żyłka, M., N. Marszałek. and W. Żyłka, Numerical simulation of pneumatic throttle check valve using computational fluid dynamics (CFD). Scientific Reports, 2023.13(1): p. 2475.
  • 17. Bhowmik, P. K. and Y. S. Kune, Flow mapping using 3D full-scale CFD simulation and hydrodynamic experiments of an ultra-supercritical turbine’s combined valve for nuclear power plant. International Journal of Energy and Environmental Engineering, 2021. 12.3: p. 365-381.
  • 18. Szpica, D., G. Mieczkowski, A. Borawski, V. Leisis, S. Diliunas, and T. Pilkaite, The computational fluid dynamics (CFD) analysis of the pressure sensor used in pulse-operated low-pressure gas-phase solenoid valve measurements. Sensors, 2021. 21.24: p. 8287.
  • 19. Žic, E., B. Patrik. and L. Luka, Hydraulic analysis of gate valve using computational fluid dynamics (CFD). Scientific Review Engineering and Environmental Sciences, 2020. 29.3: p. 275-288.
  • 20. Imam, H., M. Sabreen, K. Pibars, and W. M. M. Soltan. Studying the hydraulic characteristics of UPVC butterfly valve by CFD technique. Plant Archives, 2019. 19.2: p. 377-383.
  • 21. Buczkowski, D. and G. Nowak. Increase in tuning ability of a car shock absorber valve using CFD. Journal of Applied Fluid Mechanics, 2019. 12.6: p. 1847-1854.
  • 22. Jakobsen, J. H. and R. H. Michael, CFD assisted steady-state modelling of restrictive counterbalance valves. International Journal of Fluid Power, 2020. p. 119-146.
  • 23. Cao, Y., L. Zhou, C. Ou, H. Fang, and D. Liu, 3D CFD simulation and analysis of transient flow in a water pipeline. AQUA—Water Infrastructure, Ecosystems and Society, 2022. 71.6: p. 751-767.
  • 24. Zhang, Z., J. Li. and Y. Lixin, Numerical simulation study on the opening process of the atmospheric relief valve. Nuclear Engineering and Design, 2019. 351: p. 106-115.
  • 25. Yedekçioğlu, F., S. Akyıldız, and Z. Parlak, Numerical investigation of aerodynamic performance and noise characteristic of air multiplier bladeless fan. International Advanced Researches and Engineering Journal, 2023. p. 13-22.
  • 26. Arsenoaia, V., V. Vlâduţ, I. Ţenu, I. Voicea, G. Moiceanu, and, P. M. Cârlescu, Mathematical Modeling and Numerical Simulation of the Drying Process of Seeds in a Pilot Plant. INMATEH-Agricultural Engineering, 2019. 57(1): p. 55-62.
  • 27. Malekjani, N. and S.M. Jafari, Simulation of food drying processes by Computational Fluid Dynamics (CFD); recent advances and approaches. Trends in Food Science & Technology, 2019. 78: p. 206-223.
  • 28. Filo, G., L. Edward, and R. Janusz, Flow analysis of a switching valve with innovative poppet head geometry by means of CFD method. Flow Measurement and Instrumentation, 2019. 70: p. 101643.
  • 29. Guzei, D. V., A. V. Minakov, and V. Y. Rudyak, On efficiency of convective heat transfer of nanofluids in laminar flow regime. International Journal of Heat and Mass Transfer, 2019. 139: p. 180-192.
  • 30. Li, R., Q. Huang, F. Huo, K. Fan, W. Li, and D. Zhang, Effect of shear on the thickness of wax deposit under laminar flow regime. Journal of Petroleum Science and Engineering, 2019. 181: p. 106212.
  • 31. Shi, H., N. D. M. Raimondi, D. F. Fletcher, M. Cabassud, and C. Gourdon, Numerical study of heat transfer in square millimetric zigzag channels in the laminar flow regime. Chemical Engineering and Processing-Process Intensification, 2019. 144: p. 107624.
  • 32. Cruz, R., A. Alejandro, G. E. Colin, R. J. Téllez, and H. A. Magaña, Performance Evaluation of Austempered Ductile Iron Camshaft Low Alloyed with Vanadium on an Electric Spin Rig Test. Metals, 2023. 13.2: p. 198.
  • 33. Franzen, D., P. Björn, and B. P. Andreas, Influence of graphite-phase parameters on the mechanical properties of high-silicon ductile iron. International Journal of Metalcasting, 2023. 17.1: p. 4-21.
  • 34. Upadhyay, S. and K. S. Kuldeep, Effect of Cu and Mo addition on mechanical properties and microstructure of grey cast iron: An overview. Materials Today: Proceedings, 2020. 26: p. 2462-2470.
  • 35. Li, Y., S. Dong, P. He, S. Yan, E. Li, X. Liu, and B. Xu, Microstructure characteristics and mechanical properties of new-type FeNiCr laser cladding alloy coating on nodular cast iron. Journal of Materials Processing Technology, 2019. 269: p. 163-171.
There are 35 citations in total.

Details

Primary Language English
Subjects Numerical Modelling and Mechanical Characterisation
Journal Section Research Articles
Authors

Erhan Özkan 0000-0002-3849-6713

Publication Date December 15, 2023
Submission Date August 2, 2023
Acceptance Date December 5, 2023
Published in Issue Year 2023

Cite

APA Özkan, E. (2023). Hydrodynamic behaviour improvement of check valves through CFD analysis. International Advanced Researches and Engineering Journal, 7(3), 178-184. https://doi.org/10.35860/iarej.1336567
AMA Özkan E. Hydrodynamic behaviour improvement of check valves through CFD analysis. Int. Adv. Res. Eng. J. December 2023;7(3):178-184. doi:10.35860/iarej.1336567
Chicago Özkan, Erhan. “Hydrodynamic Behaviour Improvement of Check Valves through CFD Analysis”. International Advanced Researches and Engineering Journal 7, no. 3 (December 2023): 178-84. https://doi.org/10.35860/iarej.1336567.
EndNote Özkan E (December 1, 2023) Hydrodynamic behaviour improvement of check valves through CFD analysis. International Advanced Researches and Engineering Journal 7 3 178–184.
IEEE E. Özkan, “Hydrodynamic behaviour improvement of check valves through CFD analysis”, Int. Adv. Res. Eng. J., vol. 7, no. 3, pp. 178–184, 2023, doi: 10.35860/iarej.1336567.
ISNAD Özkan, Erhan. “Hydrodynamic Behaviour Improvement of Check Valves through CFD Analysis”. International Advanced Researches and Engineering Journal 7/3 (December 2023), 178-184. https://doi.org/10.35860/iarej.1336567.
JAMA Özkan E. Hydrodynamic behaviour improvement of check valves through CFD analysis. Int. Adv. Res. Eng. J. 2023;7:178–184.
MLA Özkan, Erhan. “Hydrodynamic Behaviour Improvement of Check Valves through CFD Analysis”. International Advanced Researches and Engineering Journal, vol. 7, no. 3, 2023, pp. 178-84, doi:10.35860/iarej.1336567.
Vancouver Özkan E. Hydrodynamic behaviour improvement of check valves through CFD analysis. Int. Adv. Res. Eng. J. 2023;7(3):178-84.



Creative Commons License

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.