A Review on hydrogen embrittlement behavior of steel structures and measurement methods
Year 2024,
, 91 - 101, 20.08.2024
Biniyam Ayele Abebe
,
Ekrem Altuncu
Abstract
Hydrogen can be found within metals under a variety of industrial and environmental conditions. Hydrogen-metal interactions can take place through hydrogen embrittlement, hydrogen sulfide corrosion, or hydrogen absorption. Steel and other metals that are exposed to hydrogen may experience a difficulty known as hydrogen embrittlement that affects their mechanical properties. The material's ductility and toughness may be reduced as a result of this phenomena, it also increasing the risk of brittle fracture. In steel, atomic hydrogen mainly diffuses into the microstructure of the steel, causing hydrogen embrittlement. Localized weakening of the bonds between the metal atoms might result from hydrogen atoms occupying interstitial positions in the metal lattice. Especially when under stress, this may lead to a more susceptible to fracture and cracking. Concerns with hydrogen embrittlement arise in sectors like aerospace and oil and gas that use high-strength steels. If not appropriately handled, it may result in catastrophic failures. Use of hydrogen-resistant alloys, appropriate heat treatments, and protection from conditions that promote hydrogen uptake are examples of preventive measures. This literature review paper covers the definition of hydrogen embrittlement (HE), mechanisms causing HE, measurement of hydrogen concentration and preventive measures that restrict hydrogen diffusion to the steel.
Ethical Statement
There are no possible conflicts of interest that the authors have disclosed about the research, writing, or publication of this article. Additionally, the authors declared that no specific authorization or ethical committee approval was needed for this piece, which was written entirely on its own and in compliance with international publication and research ethics.
References
- 1. Allen, Q. S., & Nelson, T. W., Microstructural evaluation of hydrogen embrittlement and successive recovery in advanced high strength steel. Journal of Materials Processing Technolgy, 2019. 265(2): p. 12–19.
- 2. Babaei, K., Fattah-alhosseini, A., & Molaei, M., The effects of carbon-based additives on corrosion and wear properties of Plasma electrolytic oxidation (PEO) coatings applied on Aluminum and its alloys: A review. Surfaces and Interfaces,2020. 21(9): p. 100677.
- 3. Barrera, O., Bombac, D., Chen, Y., Daff, T. D., Galindo-Nava, E., Gong, P., Haley, D., Horton, R., Katzarov, I., Kermode, J. R., Liverani, C., Stopher, M., & Sweeney, F., Understanding and mitigating hydrogen embrittlement of steels: a review of experimental, modelling and design progress from atomistic to continuum. Journal of Materials Science, 2018. 53(9): p. 6251–6290.
- 4. Bhadeshia, H. K. D. H., Prevention of hydrogen embrittlement in steels. ISIJ International, 2016. 56(1): p. 24–36.
- 5. Campari, A., Ustolin, F., Alvaro, A., & Paltrinieri, N., A review on hydrogen embrittlement and risk-based inspection of hydrogen technologies. International Journal of Hydrogen Energy, 2023. 48(90): p. 35316–35346.
- 6. Djukic, M. B., Bakic, G. M., Zeravcic, V. S., & Sedmak, A., The synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron : Localized plasticity and decohesion. Eng Fracture Mech, 2019. 1065(28): p. 1–10.
- 7. Djukic, M. B., Zeravcic, V. S., Bakic, G. M., Sedmak, A., & Rajicic, B., Hydrogen damage of steels: A case study and hydrogen embrittlement model. Engineering Failure Analysis , 2015. 52(81): p. 452-492.
- 8. Dwivedi, S. K., & Vishwakarma, M., Hydrogen embrittlement in different materials: A review. International Journal of Hydrogen Energy, 2018. 43(46): p. 21603–21616.
- 9. Eliaz, N., Shachar, A., Tal, B., & Eliezer, D., Characteristics of hydrogen embrittlement, stress corrosion cracking and tempered martensite embrittlement in high-strength steels. Engineering Failure Analysis, 2002. 9(2): p. 167–184.
- 10. Fan, Y., Huang, Y., Cui, B., & Zhou, Q., Graphene coating on nickel as effective barriers against hydrogen embrittlement. Surface Coating Technolgy, 2019. 37(4): p. 610–616.
- 11. Fan, Y., Huang, Y., Cui, B., & Zhou, Q.' Graphene coating on nickel as effective barriers against hydrogen embrittlement. Surface Coating Technolgy, 2019. 37(4): p. 610–616.
- 12. Fangnon, E., Malitckii, E., Yagodzinskyy, Y., & Vilaça, P., Improved accuracy of thermal desorption spectroscopy by specimen cooling during measurement of hydrogen concentration in a high-strength steel. Materials, 2020. 13(5): p. 200-243.
- 13. Figueroa, D., & Robinson, M. J., Hydrogen transport and embrittlement in 300 M and AerMet100 ultra high strength steels. Corros Sci, 2010. 52(5): p. 1593–1602.
- 14. Fujiwara, H., Ono, H., Onoue, K., & Nishimura, S., High-pressure gaseous hydrogen permeation test method property of polymeric materials for high-pressure hydrogen devices. International Journal of Hydrogen Energy, 2020. 45(53): p. 29082–29094.
- 15. Gabetta, G., Cioffi, P., & Bruschi, R., Engineering thoughts on hydrogen embrittlement. Procedia Structural Integrity, 2018. 9(1): p. 250–256.
- 16. Gamboa, E., & Atrens, A., Environmental influence on the stress corrosion cracking of rock bolts. Engineering Failure Analysis, 2003. 10(5): p. 521–558.
- 17. Guan, Q., Lu, W., & He, B., Recent progress in understanding the nano/micro-mechanical behavior of austenite in advanced high strength steels. Metals, 2021. 11(12): p. 312-345.
- 18. Hirata, K., Iikubo, S., Koyama, M., Tsuzaki, K., & Ohtani, H., First-Principles study on hydrogen diffusivity in BCC, FCC, and HCP iron. Metall Mater Trans A, 2018. 49(10): p. 5015–5022.
- 19. Hussein, A., Krom, A. H. M., Dey, P., Sunnardianto, G. K., Moultos, O. A., & Walters, C. L., The effect of hydrogen content and yield strength on the distribution of hydrogen in steel: a diffusion coupled micromechanical FEM study. Acta Mater, 2021. 20(9): p. 116799.
- 20. Ichitani, K., Kanno, M., & Kuramoto, S., Recent development in hydrogen microprint technique and its application to hydrogen embrittlement. 2003. 43(4): p. 496–504.
- 21. Jo, M. C., Yoo, J., Amanov, A., Song, T., Kim, S. H., Sohn, S. S., & Lee, S., Ultrasonic nanocrystal surface modification for strength improvement and suppression of hydrogen permeation in multi-layered steel. Journal of Alloys Compd, 2021. (88)5: p. 160975.
- 22. Johnson, D. F., & Carter, E. A. First-principles assessment of hydrogen absorption into FeAl and Fe3Si: Towards prevention of steel embrittlement. Acta Mater, 2010. 58(2): p. 638–648.
- 23. Kappes, M., Iannuzzi, M., & Carranza, R. M., Hydrogen Embrittlement of Magnesium and Magnesium Alloys: A Review. Journal of Electrochem Soc, 2013. 160(4): p. 168–178.
- 24. Khanchandani, H., Zeiler, S., Strobel, L., Göken, M., & Felfer, P. A., Carbon-Stabilized Austenitic Steel with Lower Hydrogen Embrittlement Susceptibility. 2024. 23(2): p. 1–5.
- 25. Kim, J. G., Seo, H. J., Park, J. M., Baek, S. M., Amanov, A., Lee, C. S., & Kim, H. S., The role of ultrasonic nanocrystalline surface modification at elevated temperature on the hydrogen charging behavior of high-Mn steels. Materialia, 2020. 9(8): P. 100626.
- 26. Koyama, M., Akiyama, E., Lee, Y., Raabe, D., & Tsuzaki, K., Overview of hydrogen embrittlement in high-Mn steels. International Journal of Hydrogen Energy,2017. 42(17): p. 12706-12723.
- 27. Li, X., Ma, X., Zhang, J., Akiyama, E., Wang, Y., & Song, X., Review of Hydrogen Embrittlement in Metals. Acta Metall Sin, 2020. 33(6): p. 759–773.
- 28. Liang, S., Huang, M., Zhao, L., Zhu, Y., & Li, Z., Effect of multiple hydrogen embrittlement mechanisms on crack propagation behavior of FCC metals. International Journal of Plasticity, 2021. 143(2): p. 103023.
- 29. Mahajan, D. K., Effect of hydrogen on short crack propagation in SA508 Grade 3 Class I low alloy steel under cyclic loading. Procedia Struct Integrity, 2019. 14(2018): p. 930–936.
- 30. Martin, M. L., Dadfarnia, M., Nagao, A., Wang, S., & Sofronis, P., Enumeration of the hydrogen-enhanced localized plasticity mechanism for hydrogen embrittlement in structural materials. Acta Mater, 2019. 16(5), p. 734–750.
- 31. Martiniano, G. A., Silveira Leal, J. E., Rosa, G. S., Bose Filho, W. W., Piza Paes, M. T., & Franco, S. D., Effect of specific microstructures on hydrogen embrittlement susceptibility of a modified AISI 4130 steel. International Journal of Hydrogen Energy, 2021. 46(73), p. 36539–36556.
- 32. Pfeil L.B., The effect of occluded hydrogen on the tensile strength of iron. Proceedings of the Royal Society of London, 1926. 112(760): p.182-195.
- 33. Nazarov, A., Helbert, V., & Vucko, F., Scanning kelvin probe for detection in steel of locations enriched by hydrogen and prone to cracking. Corros Mater Degrad, 2023. 4(1): p. 158–173.
- 34. Pérez-gonzález, F. A., Ramírez-ramírez, J. H., Hernández, L. E., & Quiñones, M. A., Characteristics of advanced high-strength steels obtained by the compact strip. Materials Science and Technology, 2023. 39(3): p. 1–11.
- 35. Pradhan, A., Vishwakarma, M., & Dwivedi, S. K., A review: The impact of hydrogen embrittlement on the fatigue strength of high strength steel. Material Today: Proceeding, 2019. 26(3): p. 3015–3019.
- 36. Ronevich, J. A., Speer, J. G., Krauss, G., & Matlock, D. K., Improvement of the hydrogen microprint technique on AHSS Steels. Material Today Proceeding, 2012,1(2): p. 79–84.
- 37. Seo, H. J., Heo, Y. U., Kim, J. N., Lee, J., Choi, S., & Lee, C. S., Effect of V/Mo ratio on the evolution of carbide precipitates and hydrogen embrittlement of tempered martensitic steel. Corrosion Science, 2020, 17(6): p. 108929.
- 38. Silva, S. C., Silva, A. B., & Ponciano Gomes, J. A. C., Hydrogen embrittlement of API 5L X65 pipeline steel in CO2 containing low H2S concentration environment. Engineering Failure Analysis, 2021, 120(6): p. 105081.
- 39. Silverstein, R., & Eliezer, D., Mechanisms of hydrogen trapping in austenitic, duplex, and super martensitic stainless steels. Journal of Alloys and Compounds, 2017. 720(5): p. 451-459.
- 40. Song, Y., Huang, S., Sheng, J., Agyenim-Boateng, E., Jiang, Y., Liu, Q., & Zhu, M., Improvement of hydrogen embrittlement resistance of 2205 duplex stainless steel by laser peening. International Journal of Hydrogen Energy, 2023, 48(49): p. 18930–18945.
- 41. Sun, B., Dong, X., Wen, J., Zhang, X. C., & Tu, S. T., Microstructure design strategies to mitigate hydrogen embrittlement in metallic materials. Fatigue and Fracture of Engineering Materials and Structures, 46(8): p. 3060–3076.
- 42. Sun, B., Wang, D., Lu, X., Wan, D., Ponge, D., & Zhang, X., Current challenges and opportunities toward understanding hydrogen embrittlement mechanisms in advanced high-strength steels: A Review. Acta Metallurgica Sinica (English Letters), 34(6): p. 741–754.
- 43. Wasim, M., & Djukic, M. B., Hydrogen embrittlement of low carbon structural steel at macro, micro and nano levels. International Journal of Hydrogen Energy, 45(3): p. 2145–2156.
- 44. Wasim, M., & Ngo, T. D., Failure analysis of structural steel subjected to long term exposure of hydrogen. Engineering Failure Analysis, 11(4): P. 104606.
- 45. Wei, P., Gu, H., Dai, Q., Shen, H., & Si, T., Preferential locations of hydrogen accumulation and damage in 1.2 GPa and 1.8 GPa grade hot-stamped steels: A Comparative Study. Metals, 12(7): p. 1075.
- 46. Wetegrove, M., Duarte, M. J., Taube, K., Rohloff, M., Gopalan, H., Scheu, C., Dehm, G., & Kruth, A. preventing hydrogen embrittlement: The Role of Barrier Coatings for the Hydrogen Economy. Hydrogen, 2023. 4(2): p. 307–322.
- 47. Ye, X., Chen, Y., Lu, B., Luo, W., & Chen, B., Study on a novel backlash-adjustable worm drive via the involute helical beveloid gear meshing with dual-lead involute cylindrical worm. Mechanism and Machine Theory, 2022. 167(34): p. 104466.
- 48. Zheng, W., He, Y., Yang, J., & Gao, Z., Hydrogen diffusion mechanism of the single-pass welded joint in welding considering the phase transformation effects. Journal of Manufacturing Processes, 2018. 36(1): p. 126–137.
Year 2024,
, 91 - 101, 20.08.2024
Biniyam Ayele Abebe
,
Ekrem Altuncu
References
- 1. Allen, Q. S., & Nelson, T. W., Microstructural evaluation of hydrogen embrittlement and successive recovery in advanced high strength steel. Journal of Materials Processing Technolgy, 2019. 265(2): p. 12–19.
- 2. Babaei, K., Fattah-alhosseini, A., & Molaei, M., The effects of carbon-based additives on corrosion and wear properties of Plasma electrolytic oxidation (PEO) coatings applied on Aluminum and its alloys: A review. Surfaces and Interfaces,2020. 21(9): p. 100677.
- 3. Barrera, O., Bombac, D., Chen, Y., Daff, T. D., Galindo-Nava, E., Gong, P., Haley, D., Horton, R., Katzarov, I., Kermode, J. R., Liverani, C., Stopher, M., & Sweeney, F., Understanding and mitigating hydrogen embrittlement of steels: a review of experimental, modelling and design progress from atomistic to continuum. Journal of Materials Science, 2018. 53(9): p. 6251–6290.
- 4. Bhadeshia, H. K. D. H., Prevention of hydrogen embrittlement in steels. ISIJ International, 2016. 56(1): p. 24–36.
- 5. Campari, A., Ustolin, F., Alvaro, A., & Paltrinieri, N., A review on hydrogen embrittlement and risk-based inspection of hydrogen technologies. International Journal of Hydrogen Energy, 2023. 48(90): p. 35316–35346.
- 6. Djukic, M. B., Bakic, G. M., Zeravcic, V. S., & Sedmak, A., The synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron : Localized plasticity and decohesion. Eng Fracture Mech, 2019. 1065(28): p. 1–10.
- 7. Djukic, M. B., Zeravcic, V. S., Bakic, G. M., Sedmak, A., & Rajicic, B., Hydrogen damage of steels: A case study and hydrogen embrittlement model. Engineering Failure Analysis , 2015. 52(81): p. 452-492.
- 8. Dwivedi, S. K., & Vishwakarma, M., Hydrogen embrittlement in different materials: A review. International Journal of Hydrogen Energy, 2018. 43(46): p. 21603–21616.
- 9. Eliaz, N., Shachar, A., Tal, B., & Eliezer, D., Characteristics of hydrogen embrittlement, stress corrosion cracking and tempered martensite embrittlement in high-strength steels. Engineering Failure Analysis, 2002. 9(2): p. 167–184.
- 10. Fan, Y., Huang, Y., Cui, B., & Zhou, Q., Graphene coating on nickel as effective barriers against hydrogen embrittlement. Surface Coating Technolgy, 2019. 37(4): p. 610–616.
- 11. Fan, Y., Huang, Y., Cui, B., & Zhou, Q.' Graphene coating on nickel as effective barriers against hydrogen embrittlement. Surface Coating Technolgy, 2019. 37(4): p. 610–616.
- 12. Fangnon, E., Malitckii, E., Yagodzinskyy, Y., & Vilaça, P., Improved accuracy of thermal desorption spectroscopy by specimen cooling during measurement of hydrogen concentration in a high-strength steel. Materials, 2020. 13(5): p. 200-243.
- 13. Figueroa, D., & Robinson, M. J., Hydrogen transport and embrittlement in 300 M and AerMet100 ultra high strength steels. Corros Sci, 2010. 52(5): p. 1593–1602.
- 14. Fujiwara, H., Ono, H., Onoue, K., & Nishimura, S., High-pressure gaseous hydrogen permeation test method property of polymeric materials for high-pressure hydrogen devices. International Journal of Hydrogen Energy, 2020. 45(53): p. 29082–29094.
- 15. Gabetta, G., Cioffi, P., & Bruschi, R., Engineering thoughts on hydrogen embrittlement. Procedia Structural Integrity, 2018. 9(1): p. 250–256.
- 16. Gamboa, E., & Atrens, A., Environmental influence on the stress corrosion cracking of rock bolts. Engineering Failure Analysis, 2003. 10(5): p. 521–558.
- 17. Guan, Q., Lu, W., & He, B., Recent progress in understanding the nano/micro-mechanical behavior of austenite in advanced high strength steels. Metals, 2021. 11(12): p. 312-345.
- 18. Hirata, K., Iikubo, S., Koyama, M., Tsuzaki, K., & Ohtani, H., First-Principles study on hydrogen diffusivity in BCC, FCC, and HCP iron. Metall Mater Trans A, 2018. 49(10): p. 5015–5022.
- 19. Hussein, A., Krom, A. H. M., Dey, P., Sunnardianto, G. K., Moultos, O. A., & Walters, C. L., The effect of hydrogen content and yield strength on the distribution of hydrogen in steel: a diffusion coupled micromechanical FEM study. Acta Mater, 2021. 20(9): p. 116799.
- 20. Ichitani, K., Kanno, M., & Kuramoto, S., Recent development in hydrogen microprint technique and its application to hydrogen embrittlement. 2003. 43(4): p. 496–504.
- 21. Jo, M. C., Yoo, J., Amanov, A., Song, T., Kim, S. H., Sohn, S. S., & Lee, S., Ultrasonic nanocrystal surface modification for strength improvement and suppression of hydrogen permeation in multi-layered steel. Journal of Alloys Compd, 2021. (88)5: p. 160975.
- 22. Johnson, D. F., & Carter, E. A. First-principles assessment of hydrogen absorption into FeAl and Fe3Si: Towards prevention of steel embrittlement. Acta Mater, 2010. 58(2): p. 638–648.
- 23. Kappes, M., Iannuzzi, M., & Carranza, R. M., Hydrogen Embrittlement of Magnesium and Magnesium Alloys: A Review. Journal of Electrochem Soc, 2013. 160(4): p. 168–178.
- 24. Khanchandani, H., Zeiler, S., Strobel, L., Göken, M., & Felfer, P. A., Carbon-Stabilized Austenitic Steel with Lower Hydrogen Embrittlement Susceptibility. 2024. 23(2): p. 1–5.
- 25. Kim, J. G., Seo, H. J., Park, J. M., Baek, S. M., Amanov, A., Lee, C. S., & Kim, H. S., The role of ultrasonic nanocrystalline surface modification at elevated temperature on the hydrogen charging behavior of high-Mn steels. Materialia, 2020. 9(8): P. 100626.
- 26. Koyama, M., Akiyama, E., Lee, Y., Raabe, D., & Tsuzaki, K., Overview of hydrogen embrittlement in high-Mn steels. International Journal of Hydrogen Energy,2017. 42(17): p. 12706-12723.
- 27. Li, X., Ma, X., Zhang, J., Akiyama, E., Wang, Y., & Song, X., Review of Hydrogen Embrittlement in Metals. Acta Metall Sin, 2020. 33(6): p. 759–773.
- 28. Liang, S., Huang, M., Zhao, L., Zhu, Y., & Li, Z., Effect of multiple hydrogen embrittlement mechanisms on crack propagation behavior of FCC metals. International Journal of Plasticity, 2021. 143(2): p. 103023.
- 29. Mahajan, D. K., Effect of hydrogen on short crack propagation in SA508 Grade 3 Class I low alloy steel under cyclic loading. Procedia Struct Integrity, 2019. 14(2018): p. 930–936.
- 30. Martin, M. L., Dadfarnia, M., Nagao, A., Wang, S., & Sofronis, P., Enumeration of the hydrogen-enhanced localized plasticity mechanism for hydrogen embrittlement in structural materials. Acta Mater, 2019. 16(5), p. 734–750.
- 31. Martiniano, G. A., Silveira Leal, J. E., Rosa, G. S., Bose Filho, W. W., Piza Paes, M. T., & Franco, S. D., Effect of specific microstructures on hydrogen embrittlement susceptibility of a modified AISI 4130 steel. International Journal of Hydrogen Energy, 2021. 46(73), p. 36539–36556.
- 32. Pfeil L.B., The effect of occluded hydrogen on the tensile strength of iron. Proceedings of the Royal Society of London, 1926. 112(760): p.182-195.
- 33. Nazarov, A., Helbert, V., & Vucko, F., Scanning kelvin probe for detection in steel of locations enriched by hydrogen and prone to cracking. Corros Mater Degrad, 2023. 4(1): p. 158–173.
- 34. Pérez-gonzález, F. A., Ramírez-ramírez, J. H., Hernández, L. E., & Quiñones, M. A., Characteristics of advanced high-strength steels obtained by the compact strip. Materials Science and Technology, 2023. 39(3): p. 1–11.
- 35. Pradhan, A., Vishwakarma, M., & Dwivedi, S. K., A review: The impact of hydrogen embrittlement on the fatigue strength of high strength steel. Material Today: Proceeding, 2019. 26(3): p. 3015–3019.
- 36. Ronevich, J. A., Speer, J. G., Krauss, G., & Matlock, D. K., Improvement of the hydrogen microprint technique on AHSS Steels. Material Today Proceeding, 2012,1(2): p. 79–84.
- 37. Seo, H. J., Heo, Y. U., Kim, J. N., Lee, J., Choi, S., & Lee, C. S., Effect of V/Mo ratio on the evolution of carbide precipitates and hydrogen embrittlement of tempered martensitic steel. Corrosion Science, 2020, 17(6): p. 108929.
- 38. Silva, S. C., Silva, A. B., & Ponciano Gomes, J. A. C., Hydrogen embrittlement of API 5L X65 pipeline steel in CO2 containing low H2S concentration environment. Engineering Failure Analysis, 2021, 120(6): p. 105081.
- 39. Silverstein, R., & Eliezer, D., Mechanisms of hydrogen trapping in austenitic, duplex, and super martensitic stainless steels. Journal of Alloys and Compounds, 2017. 720(5): p. 451-459.
- 40. Song, Y., Huang, S., Sheng, J., Agyenim-Boateng, E., Jiang, Y., Liu, Q., & Zhu, M., Improvement of hydrogen embrittlement resistance of 2205 duplex stainless steel by laser peening. International Journal of Hydrogen Energy, 2023, 48(49): p. 18930–18945.
- 41. Sun, B., Dong, X., Wen, J., Zhang, X. C., & Tu, S. T., Microstructure design strategies to mitigate hydrogen embrittlement in metallic materials. Fatigue and Fracture of Engineering Materials and Structures, 46(8): p. 3060–3076.
- 42. Sun, B., Wang, D., Lu, X., Wan, D., Ponge, D., & Zhang, X., Current challenges and opportunities toward understanding hydrogen embrittlement mechanisms in advanced high-strength steels: A Review. Acta Metallurgica Sinica (English Letters), 34(6): p. 741–754.
- 43. Wasim, M., & Djukic, M. B., Hydrogen embrittlement of low carbon structural steel at macro, micro and nano levels. International Journal of Hydrogen Energy, 45(3): p. 2145–2156.
- 44. Wasim, M., & Ngo, T. D., Failure analysis of structural steel subjected to long term exposure of hydrogen. Engineering Failure Analysis, 11(4): P. 104606.
- 45. Wei, P., Gu, H., Dai, Q., Shen, H., & Si, T., Preferential locations of hydrogen accumulation and damage in 1.2 GPa and 1.8 GPa grade hot-stamped steels: A Comparative Study. Metals, 12(7): p. 1075.
- 46. Wetegrove, M., Duarte, M. J., Taube, K., Rohloff, M., Gopalan, H., Scheu, C., Dehm, G., & Kruth, A. preventing hydrogen embrittlement: The Role of Barrier Coatings for the Hydrogen Economy. Hydrogen, 2023. 4(2): p. 307–322.
- 47. Ye, X., Chen, Y., Lu, B., Luo, W., & Chen, B., Study on a novel backlash-adjustable worm drive via the involute helical beveloid gear meshing with dual-lead involute cylindrical worm. Mechanism and Machine Theory, 2022. 167(34): p. 104466.
- 48. Zheng, W., He, Y., Yang, J., & Gao, Z., Hydrogen diffusion mechanism of the single-pass welded joint in welding considering the phase transformation effects. Journal of Manufacturing Processes, 2018. 36(1): p. 126–137.