Review
BibTex RIS Cite

A review on integration of carbon fiber and polymer matrix composites in 3D printing technology

Year 2024, , 102 - 115, 20.08.2024
https://doi.org/10.35860/iarej.1484042

Abstract

Three-dimensional (3D) printing applications obtained by combining the lightness, high strength, and durability of carbon fiber with polymer matrix composites provide various industrial advantages. These advantages offer new design and production opportunities for automotive, aviation, space, medical devices, and many other industrial fields. This review article discusses material innovations in 3D printing technology with a focus on the integration of carbon fiber and polymer matrix composites. After examining the current state and future potential of 3D printing technology, the properties and advantages of carbon fiber and polymer matrix composites and the difficulties encountered with their integration into the 3D printing process were examined. In conclusion, this review article comprehensively discusses the current status, advantages, challenges, and future directions on the integration of carbon fiber and polymer matrix composites in 3D printing technology. This article can be an important resource for industry professionals and researchers in materials science and engineering.

Ethical Statement

Ethical approval not required.

Supporting Institution

Kastamonu University

Project Number

KÜBAP-1/2023-18

Thanks

Authors would like to thank Kastamonu University and project unit staff for the support of the project numbered KÜBAP-1/2023-18.

References

  • 1. Heidari-Rarani, M., Rafiee-Afarani, M., & Zahedi, A. M. Mechanical characterization of FDM 3D printing of continuous carbon fiber reinforced PLA composites. Composites Part B: Engineering, 2019. 175, 107147: p. 1–8.
  • 2. Sharma, B., Bhavsar, P., Moscoso-Kingsley, W., & Madhavan, V. Detecting first layer bond quality during FDM 3D printing using a discrete wavelet energy approach. Procedia Manufacturing, 2020. 48: pp. 718–724.
  • 3. Bhagia, S., et al. A critical review of FDM 3D printing of PLA biocomposites filled with biomass resources, characterization, biodegradability, upcycling, and opportunities for biorefineries. RSC Advances, 2020. 10(37): p. 21698–21723.
  • 4. Hwang, S., Reyes, E. I., Moon, K., Rumpf, R. C., & Kim, N. S. Thermo-mechanical characterization of metal/polymer composite filaments and printing parameter study for fused deposition modeling in the 3D printing process. Journal of Electronic Materials, 2015. 44: p. 771–777.
  • 5. Kristian, R. B., Imaduddin, F., Ariawan, D., Ubaidillah, & Arifin, Z. A review on the fused deposition modeling (FDM) 3D printing: Filament processing, materials, and printing parameters. Open Engineering, 2021. 11(1): p. 639–649.
  • 6. Tamir, T. S., Xiong, G., Fang, Q., Dong, X., Shen, Z., & Wang, F. Y. A feedback-based print quality improving strategy for FDM 3D printing: an optimal design approach. The International Journal of Advanced Manufacturing Technology, 2022. 120(3): p. 2777-2791.
  • 7. Tura, A. D., Lemu, H. G., Melaku, L. E., & Mamo, H. B. Impact of FDM 3D printing parameters on compressive strength and printing weight of PLA components. In International Workshop of Advanced Manufacturing and Automation, 2022, October. p. 495–504.
  • 8. Alhazmi, M. W., Backar, A. H., & Backar, A. H. Influence of infill density and orientation on the mechanical response of PLA+ specimens produced using FDM 3D printing. Int. J. Adv. Sci. Technol, 2020. 29(6): p. 3362–3371.
  • 9. Rownaghi, A., Lawson, S., Li, X., Thakkar, H., & Rezaei, F. Recent advances in 3D printing of structured materials for adsorption and catalysis applications. Chemical Reviews, 2021. 121(10): p. 6246–6291.
  • 10. Kokkinis, D., Schaffner, M., & Studart, A. R. Multimaterial magnetically assisted 3D printing of composite materials. Nature Communications, 2015. 6(1), 8643: p. 1–10.
  • 11. Alhnan, M. A., et al. A lower temperature FDM 3D printing for the manufacture of patient-specific immediate release tablets. Pharmaceutical Research, 2016. 33: p. 2704–2712.
  • 12. Bose, S., Roy, M., & Bandyopadhyay, A. Recent advances in bone tissue engineering scaffolds. Trends in Biotechnology, 2012. 30(10): p. 546–554.
  • 13. Ahmed, T. N., Belduque, M. C., & Tate, J. S. Time dependence of magnetic moment of strontium-ferrite powder measured with a biaxial vibrating sample magnetometer (VSM). AIP Advances, 2021. 11(1), 015048: p. 1–5.
  • 14. Goyanes, A., Wang, J., Buanz, A., Martínez-Pacheco, R., Telford, R., & Gaisford, S. 3D printing of medicines: engineering novel oral devices with unique design and drug release characteristics. Molecular Pharmaceutics, 2015. 12(11): p. 4077–4084.
  • 15. Kodali, D., Umerah, C. O., Idrees, M. O., Jeelani, S., & Rangari, V. K. Fabrication and characterization of polycarbonate-silica filaments for 3D printing applications. Journal of Composite Materials, 2021. 55(30): p. 4575–4584.
  • 16. Yohannan, A., Vincent, S., Divakaran, N., Pottikadavath Venugopal, A. K., Patra, S., Ashish, K., & Mohanty, S. Experimental and simulation studies of hybrid MWCNT/montmorillonite reinforced FDM based PLA filaments with multifunctional properties enhancement. Polymer Composites, 2024. 45(1): p. 507–522.
  • 17. Parmaksız, F., Anaç, N., Koçar, O., & Erdogan, B. Investigation of mechanical properties and thermal conductivity coefficients of 3D printer materials. International Advanced Researches and Engineering Journal, 2023. 7(3): p.146–156.
  • 18. Gupta, A., Fidan, I., Hasanov, S., & Nasirov, A. Processing, mechanical characterization, and micrography of 3D-printed short carbon fiber reinforced polycarbonate polymer matrix composite material. The International Journal of Advanced Manufacturing Technology, 2020. 107: p. 3185–3205.
  • 19. Saroia, J., Wang, Y., Wei, Q., Lei, M., Li, X., Guo, Y., & Zhang, K. A review on 3D printed matrix polymer composites: its potential and future challenges. The international journal of advanced manufacturing technology, 2020. 106: p.1695-1721.
  • 20. Luan, C., Yao, X., Zhang, C., Wang, B., & Fu, J. Large-scale deformation and damage detection of 3D printed continuous carbon fiber reinforced polymer-matrix composite structures. Composite Structures, 2019. 212: p. 552–560.
  • 21. Tian, X., Todoroki, A., Liu, T., Wu, L., Hou, Z., Ueda, M., ... & Lu, B. 3D printing of continuous fiber reinforced polymer composites: development, application, and perspective. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers, 2022. 1(1), 100016: p. 1–20.
  • 22. Perna, A. S., Viscusi, A., Gatta, R. D., & Astarita, A. Integrating 3D printing of polymer matrix composites and metal additive layer manufacturing: surface metallization of 3D printed composite panels through cold spray deposition of aluminum particles. International Journal of Material Forming, 2022. 15(2): p.15.
  • 23. Zhu, W., Fu, H., Xu, Z., Liu, R., Jiang, P., Shao, X., ... & Yan, C. Fabrication and characterization of carbon fiber reinforced SiC ceramic matrix composites based on 3D printing technology. Journal of the European Ceramic Society, 2018. 38(14): p. 4604–4613.
  • 24. Parandoush, P., Zhou, C., & Lin, D. 3D printing of ultrahigh strength continuous carbon fiber composites. Advanced Engineering Materials, 2019. 21(2), 1800622.
  • 25. Adumitroaie, A., Antonov, F., Khaziev, A., Azarov, A., Golubev, M., & Vasiliev, V. V. Novel continuous fiber bi-matrix composite 3-D printing technology. Materials, 2019. 12(18), 3011.
  • 26. Pakula, D., Brząkalski, D., Sztorch, B., Frydrych, M., Špitalský, Z., & Przekop, R. E. Natural and synthetic polymer fillers for applications in 3D printing—FDM technology area. Solids, 2022. 3(3): p. 508–548.
  • 27. Bandyopadhyay, A., & Bose, S. Bone tissue engineering using 3D printing. Materials Today, 2021. 16: p. 496–504.
  • 28. Sikder, P., Challa, B. T., & Gummadi, S. K. Bioactive amorphous magnesium phosphate-polyetheretherketone composite filaments for 3D printing. Materialia, 2022. 22: pp. 865–883.
  • 29. Wickramasinghe, S., Nguyen-Van, V., Ghazlan, A., Nguyen-Xuan, H., & Tran, P. FDM-based 3D printing of polymer and associated composite: A review on mechanical properties, defects, and treatments. Polymers, 2020. 12(7), 1529: p. 1–42.
  • 30. Çanti, E., Aydın, M., & Yıldırım, F. Production and characterization of composite filaments for 3D printing. Politeknik Dergisi, 2018. 21(2): p. 397–402.
  • 31. Sezer, H., Eren, O., Börklü, H., & Özdemir, V. Additive manufacturing of carbon fiber reinforced plastic composites by fused deposition modeling: Effect of fiber content and process parameters on mechanical properties. Journal of the Faculty of Engineering and Architecture of Gazi University, 2019. 34(2): p. 663–674.
  • 32. Çelik, S., & Yılmaz, G. Ü. R. 3 boyutlu yazıcı ile üretilen ABS ve karbon fiber takviyeli ABS kompozitlerde üretim parametrelerinin mekanik özelliklere etkisi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2021. 23(1): p. 200-209.
  • 33. Urtekin, L., Gunes, D., Yılan, F., & Çanlı, M. The effect of layers on the unidirectional carbon fibers of the reinforced polyester resin matrix composite material. Gazi University Journal Of Science Part C: Design and Technology, 2022. 10(3): p. 495-503.
  • 34. Güneş, M., & Çayıroğlu, İ. Mechanical behavior of 3D printed parts with continuous steel wire reinforcement. El-Cezeri, 2022. 9(1): p. 276-289.
  • 35. Nergün, M., Nafız, Ö. N. E. L., Vatandaş, B. B., Altuğ, U. Ş. U. N., & Gümrük, R. Obtaining high mechanical properties polyamide-continuous carbon fiber reinforced thermoplastic composites with infrared heating. Avrupa Bilim ve Teknoloji Dergisi, 2022. (36): p. 222–226.
  • 36. Kurban, M., Babaarslan, O., & Çağatay, İ. H. Carbon-based filament yarns are used in different forms in the design of textile-reinforced concrete structures. Textile and Apparel, 2022. 32(2): p. 173–182.
  • 37. Tanabi, H. Investigation of the temperature effect on the mechanical properties of 3D printed composites. International Advanced Researches and Engineering Journal, 2021. 5(2): p. 188–193.
  • 38. Seçgin, İ., Kahraman, H., Cesur, İ. Karbon fiber filament kullanılan eklemeli imalat işleminde yüzey pürüzlülüğü optimizasyonu. 1st International Conference on Recent Academic Studies. May 2-4, 2023. Konya, Turkey: p. 121-123.
  • 39. Yıldız, A. Investigation of the creep behavior of 3D printed carbon fiber reinforced PLA specimens, Master Thesis, Karabuk University, Institute of Graduate Education, 2022.
  • 40. Taleb, M. D. Production and testing of continuous wire-reinforced PLA filament for the 3D printer, 2023. Master Thesis, Karabuk University, Institute of Graduate Education, Turkey.
  • 41. Çelik, B., Şener, B., Serin, G., & Unver, H. O. Ergiyik filament fabrikasyonu, 3B yazıcılar için kompozit filament ekstrüder makinesi geliştirilmesi. Makina Tasarım ve İmalat Dergisi, 2020. 17(2): p. 65-75.
  • 42. Uşun, A., Gümrük, R., Yıldız, N., & Vatandaş, B. B. Examination of the influence of printing parameters for the continuous carbon fiber-reinforced thermoplastics based on fused deposition modeling. The International Journal of Materials and Engineering Technology, 2022. 5(2): p. 65–70.
  • 43. Yeşil, Ö., & Asi, O. Investigation of the water absorption properties of pultruded hybrid composite profiles. Usak University Journal of Engineering Sciences, 2019. 2(1): p. 48–56.
  • 44. Yaman, N., Öktem, T., & Seventekin, N. Karbon liflerinin üretimi. Tekstil ve Konfeksiyon, 2006. 16(3), p. 164-173.
  • 45. Yaman, N., Öktem, T., & Seventekin, N. Karbon liflerinin özellikleri ve kullanım olanakları. Tekstil ve Konfeksiyon, 2007. 17(2): p. 90-95.
  • 46. Kaygısız, H., Pektürk, H. Y., & Topuz, P. Karbon fiber takviyeli filamentler kullanarak 3 boyutlu yazıcıda basılan malzemelerin mekanik özelliklerinin incelenmesi. International Symposium On 3D Printing Technologies 3-4 Apr 2017, 3D-PTS2017: p. 213-217.
  • 47. Öztürk, F. H., Öz, Ö., Aydın, M., Kılıç, E., İsak, S. O., & Bektaş, U. Sürekli fiber takviyeli kompozit filament üretimi ve yazdırılması. In 4th International Congress on 3d Printing (additive manufacturing) Technologies and Digital Industry. 2019. Antalya: p. 592-596.
  • 48. Hu, Q., Duan, Y., Zhang, H., Liu, D., Yan, B., & Peng, F. Manufacturing and 3D printing of continuous carbon fiber prepreg filament. Journal of Materials Science, 2018. 53: p. 1887-1898.
  • 49. Gahletia, S., Kaushik, A., Garg, R. K., Chhabra, D., Kovács, A., Khargotra, R., & Singh, T. Fabrication and analysis of micro carbon fiber filled nylon filament reinforced with Kevlar, Fiberglass, and HSHT Fiberglass using dual extrusion system. Materials Today Communications, 2023. 35, 106075: p. 1–11.
  • 50. Xin, Z., Ma, Y., Chen, Y., Wang, B., Xiao, H., & Duan, Y. Fusion-bonding performance of short and continuous carbon fiber synergistic reinforced composites using fused filament fabrication. Composites Part B: Engineering, 2023. 248, 110370.
  • 51. Almeshari, B., Junaedi, H., Baig, M., & Almajid, A. Development of 3D printing short carbon fiber reinforced polypropylene composite filaments. Journal of Materials Research and Technology, 2023. 24: p. 16–26.
Year 2024, , 102 - 115, 20.08.2024
https://doi.org/10.35860/iarej.1484042

Abstract

Project Number

KÜBAP-1/2023-18

References

  • 1. Heidari-Rarani, M., Rafiee-Afarani, M., & Zahedi, A. M. Mechanical characterization of FDM 3D printing of continuous carbon fiber reinforced PLA composites. Composites Part B: Engineering, 2019. 175, 107147: p. 1–8.
  • 2. Sharma, B., Bhavsar, P., Moscoso-Kingsley, W., & Madhavan, V. Detecting first layer bond quality during FDM 3D printing using a discrete wavelet energy approach. Procedia Manufacturing, 2020. 48: pp. 718–724.
  • 3. Bhagia, S., et al. A critical review of FDM 3D printing of PLA biocomposites filled with biomass resources, characterization, biodegradability, upcycling, and opportunities for biorefineries. RSC Advances, 2020. 10(37): p. 21698–21723.
  • 4. Hwang, S., Reyes, E. I., Moon, K., Rumpf, R. C., & Kim, N. S. Thermo-mechanical characterization of metal/polymer composite filaments and printing parameter study for fused deposition modeling in the 3D printing process. Journal of Electronic Materials, 2015. 44: p. 771–777.
  • 5. Kristian, R. B., Imaduddin, F., Ariawan, D., Ubaidillah, & Arifin, Z. A review on the fused deposition modeling (FDM) 3D printing: Filament processing, materials, and printing parameters. Open Engineering, 2021. 11(1): p. 639–649.
  • 6. Tamir, T. S., Xiong, G., Fang, Q., Dong, X., Shen, Z., & Wang, F. Y. A feedback-based print quality improving strategy for FDM 3D printing: an optimal design approach. The International Journal of Advanced Manufacturing Technology, 2022. 120(3): p. 2777-2791.
  • 7. Tura, A. D., Lemu, H. G., Melaku, L. E., & Mamo, H. B. Impact of FDM 3D printing parameters on compressive strength and printing weight of PLA components. In International Workshop of Advanced Manufacturing and Automation, 2022, October. p. 495–504.
  • 8. Alhazmi, M. W., Backar, A. H., & Backar, A. H. Influence of infill density and orientation on the mechanical response of PLA+ specimens produced using FDM 3D printing. Int. J. Adv. Sci. Technol, 2020. 29(6): p. 3362–3371.
  • 9. Rownaghi, A., Lawson, S., Li, X., Thakkar, H., & Rezaei, F. Recent advances in 3D printing of structured materials for adsorption and catalysis applications. Chemical Reviews, 2021. 121(10): p. 6246–6291.
  • 10. Kokkinis, D., Schaffner, M., & Studart, A. R. Multimaterial magnetically assisted 3D printing of composite materials. Nature Communications, 2015. 6(1), 8643: p. 1–10.
  • 11. Alhnan, M. A., et al. A lower temperature FDM 3D printing for the manufacture of patient-specific immediate release tablets. Pharmaceutical Research, 2016. 33: p. 2704–2712.
  • 12. Bose, S., Roy, M., & Bandyopadhyay, A. Recent advances in bone tissue engineering scaffolds. Trends in Biotechnology, 2012. 30(10): p. 546–554.
  • 13. Ahmed, T. N., Belduque, M. C., & Tate, J. S. Time dependence of magnetic moment of strontium-ferrite powder measured with a biaxial vibrating sample magnetometer (VSM). AIP Advances, 2021. 11(1), 015048: p. 1–5.
  • 14. Goyanes, A., Wang, J., Buanz, A., Martínez-Pacheco, R., Telford, R., & Gaisford, S. 3D printing of medicines: engineering novel oral devices with unique design and drug release characteristics. Molecular Pharmaceutics, 2015. 12(11): p. 4077–4084.
  • 15. Kodali, D., Umerah, C. O., Idrees, M. O., Jeelani, S., & Rangari, V. K. Fabrication and characterization of polycarbonate-silica filaments for 3D printing applications. Journal of Composite Materials, 2021. 55(30): p. 4575–4584.
  • 16. Yohannan, A., Vincent, S., Divakaran, N., Pottikadavath Venugopal, A. K., Patra, S., Ashish, K., & Mohanty, S. Experimental and simulation studies of hybrid MWCNT/montmorillonite reinforced FDM based PLA filaments with multifunctional properties enhancement. Polymer Composites, 2024. 45(1): p. 507–522.
  • 17. Parmaksız, F., Anaç, N., Koçar, O., & Erdogan, B. Investigation of mechanical properties and thermal conductivity coefficients of 3D printer materials. International Advanced Researches and Engineering Journal, 2023. 7(3): p.146–156.
  • 18. Gupta, A., Fidan, I., Hasanov, S., & Nasirov, A. Processing, mechanical characterization, and micrography of 3D-printed short carbon fiber reinforced polycarbonate polymer matrix composite material. The International Journal of Advanced Manufacturing Technology, 2020. 107: p. 3185–3205.
  • 19. Saroia, J., Wang, Y., Wei, Q., Lei, M., Li, X., Guo, Y., & Zhang, K. A review on 3D printed matrix polymer composites: its potential and future challenges. The international journal of advanced manufacturing technology, 2020. 106: p.1695-1721.
  • 20. Luan, C., Yao, X., Zhang, C., Wang, B., & Fu, J. Large-scale deformation and damage detection of 3D printed continuous carbon fiber reinforced polymer-matrix composite structures. Composite Structures, 2019. 212: p. 552–560.
  • 21. Tian, X., Todoroki, A., Liu, T., Wu, L., Hou, Z., Ueda, M., ... & Lu, B. 3D printing of continuous fiber reinforced polymer composites: development, application, and perspective. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers, 2022. 1(1), 100016: p. 1–20.
  • 22. Perna, A. S., Viscusi, A., Gatta, R. D., & Astarita, A. Integrating 3D printing of polymer matrix composites and metal additive layer manufacturing: surface metallization of 3D printed composite panels through cold spray deposition of aluminum particles. International Journal of Material Forming, 2022. 15(2): p.15.
  • 23. Zhu, W., Fu, H., Xu, Z., Liu, R., Jiang, P., Shao, X., ... & Yan, C. Fabrication and characterization of carbon fiber reinforced SiC ceramic matrix composites based on 3D printing technology. Journal of the European Ceramic Society, 2018. 38(14): p. 4604–4613.
  • 24. Parandoush, P., Zhou, C., & Lin, D. 3D printing of ultrahigh strength continuous carbon fiber composites. Advanced Engineering Materials, 2019. 21(2), 1800622.
  • 25. Adumitroaie, A., Antonov, F., Khaziev, A., Azarov, A., Golubev, M., & Vasiliev, V. V. Novel continuous fiber bi-matrix composite 3-D printing technology. Materials, 2019. 12(18), 3011.
  • 26. Pakula, D., Brząkalski, D., Sztorch, B., Frydrych, M., Špitalský, Z., & Przekop, R. E. Natural and synthetic polymer fillers for applications in 3D printing—FDM technology area. Solids, 2022. 3(3): p. 508–548.
  • 27. Bandyopadhyay, A., & Bose, S. Bone tissue engineering using 3D printing. Materials Today, 2021. 16: p. 496–504.
  • 28. Sikder, P., Challa, B. T., & Gummadi, S. K. Bioactive amorphous magnesium phosphate-polyetheretherketone composite filaments for 3D printing. Materialia, 2022. 22: pp. 865–883.
  • 29. Wickramasinghe, S., Nguyen-Van, V., Ghazlan, A., Nguyen-Xuan, H., & Tran, P. FDM-based 3D printing of polymer and associated composite: A review on mechanical properties, defects, and treatments. Polymers, 2020. 12(7), 1529: p. 1–42.
  • 30. Çanti, E., Aydın, M., & Yıldırım, F. Production and characterization of composite filaments for 3D printing. Politeknik Dergisi, 2018. 21(2): p. 397–402.
  • 31. Sezer, H., Eren, O., Börklü, H., & Özdemir, V. Additive manufacturing of carbon fiber reinforced plastic composites by fused deposition modeling: Effect of fiber content and process parameters on mechanical properties. Journal of the Faculty of Engineering and Architecture of Gazi University, 2019. 34(2): p. 663–674.
  • 32. Çelik, S., & Yılmaz, G. Ü. R. 3 boyutlu yazıcı ile üretilen ABS ve karbon fiber takviyeli ABS kompozitlerde üretim parametrelerinin mekanik özelliklere etkisi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2021. 23(1): p. 200-209.
  • 33. Urtekin, L., Gunes, D., Yılan, F., & Çanlı, M. The effect of layers on the unidirectional carbon fibers of the reinforced polyester resin matrix composite material. Gazi University Journal Of Science Part C: Design and Technology, 2022. 10(3): p. 495-503.
  • 34. Güneş, M., & Çayıroğlu, İ. Mechanical behavior of 3D printed parts with continuous steel wire reinforcement. El-Cezeri, 2022. 9(1): p. 276-289.
  • 35. Nergün, M., Nafız, Ö. N. E. L., Vatandaş, B. B., Altuğ, U. Ş. U. N., & Gümrük, R. Obtaining high mechanical properties polyamide-continuous carbon fiber reinforced thermoplastic composites with infrared heating. Avrupa Bilim ve Teknoloji Dergisi, 2022. (36): p. 222–226.
  • 36. Kurban, M., Babaarslan, O., & Çağatay, İ. H. Carbon-based filament yarns are used in different forms in the design of textile-reinforced concrete structures. Textile and Apparel, 2022. 32(2): p. 173–182.
  • 37. Tanabi, H. Investigation of the temperature effect on the mechanical properties of 3D printed composites. International Advanced Researches and Engineering Journal, 2021. 5(2): p. 188–193.
  • 38. Seçgin, İ., Kahraman, H., Cesur, İ. Karbon fiber filament kullanılan eklemeli imalat işleminde yüzey pürüzlülüğü optimizasyonu. 1st International Conference on Recent Academic Studies. May 2-4, 2023. Konya, Turkey: p. 121-123.
  • 39. Yıldız, A. Investigation of the creep behavior of 3D printed carbon fiber reinforced PLA specimens, Master Thesis, Karabuk University, Institute of Graduate Education, 2022.
  • 40. Taleb, M. D. Production and testing of continuous wire-reinforced PLA filament for the 3D printer, 2023. Master Thesis, Karabuk University, Institute of Graduate Education, Turkey.
  • 41. Çelik, B., Şener, B., Serin, G., & Unver, H. O. Ergiyik filament fabrikasyonu, 3B yazıcılar için kompozit filament ekstrüder makinesi geliştirilmesi. Makina Tasarım ve İmalat Dergisi, 2020. 17(2): p. 65-75.
  • 42. Uşun, A., Gümrük, R., Yıldız, N., & Vatandaş, B. B. Examination of the influence of printing parameters for the continuous carbon fiber-reinforced thermoplastics based on fused deposition modeling. The International Journal of Materials and Engineering Technology, 2022. 5(2): p. 65–70.
  • 43. Yeşil, Ö., & Asi, O. Investigation of the water absorption properties of pultruded hybrid composite profiles. Usak University Journal of Engineering Sciences, 2019. 2(1): p. 48–56.
  • 44. Yaman, N., Öktem, T., & Seventekin, N. Karbon liflerinin üretimi. Tekstil ve Konfeksiyon, 2006. 16(3), p. 164-173.
  • 45. Yaman, N., Öktem, T., & Seventekin, N. Karbon liflerinin özellikleri ve kullanım olanakları. Tekstil ve Konfeksiyon, 2007. 17(2): p. 90-95.
  • 46. Kaygısız, H., Pektürk, H. Y., & Topuz, P. Karbon fiber takviyeli filamentler kullanarak 3 boyutlu yazıcıda basılan malzemelerin mekanik özelliklerinin incelenmesi. International Symposium On 3D Printing Technologies 3-4 Apr 2017, 3D-PTS2017: p. 213-217.
  • 47. Öztürk, F. H., Öz, Ö., Aydın, M., Kılıç, E., İsak, S. O., & Bektaş, U. Sürekli fiber takviyeli kompozit filament üretimi ve yazdırılması. In 4th International Congress on 3d Printing (additive manufacturing) Technologies and Digital Industry. 2019. Antalya: p. 592-596.
  • 48. Hu, Q., Duan, Y., Zhang, H., Liu, D., Yan, B., & Peng, F. Manufacturing and 3D printing of continuous carbon fiber prepreg filament. Journal of Materials Science, 2018. 53: p. 1887-1898.
  • 49. Gahletia, S., Kaushik, A., Garg, R. K., Chhabra, D., Kovács, A., Khargotra, R., & Singh, T. Fabrication and analysis of micro carbon fiber filled nylon filament reinforced with Kevlar, Fiberglass, and HSHT Fiberglass using dual extrusion system. Materials Today Communications, 2023. 35, 106075: p. 1–11.
  • 50. Xin, Z., Ma, Y., Chen, Y., Wang, B., Xiao, H., & Duan, Y. Fusion-bonding performance of short and continuous carbon fiber synergistic reinforced composites using fused filament fabrication. Composites Part B: Engineering, 2023. 248, 110370.
  • 51. Almeshari, B., Junaedi, H., Baig, M., & Almajid, A. Development of 3D printing short carbon fiber reinforced polypropylene composite filaments. Journal of Materials Research and Technology, 2023. 24: p. 16–26.
There are 51 citations in total.

Details

Primary Language English
Subjects Material Design and Behaviors
Journal Section Review Articles
Authors

Arslan Kaptan 0000-0002-2431-9329

Fuat Kartal 0000-0002-2567-9705

Project Number KÜBAP-1/2023-18
Early Pub Date August 20, 2024
Publication Date August 20, 2024
Submission Date June 3, 2024
Acceptance Date August 7, 2024
Published in Issue Year 2024

Cite

APA Kaptan, A., & Kartal, F. (2024). A review on integration of carbon fiber and polymer matrix composites in 3D printing technology. International Advanced Researches and Engineering Journal, 8(2), 102-115. https://doi.org/10.35860/iarej.1484042
AMA Kaptan A, Kartal F. A review on integration of carbon fiber and polymer matrix composites in 3D printing technology. Int. Adv. Res. Eng. J. August 2024;8(2):102-115. doi:10.35860/iarej.1484042
Chicago Kaptan, Arslan, and Fuat Kartal. “A Review on Integration of Carbon Fiber and Polymer Matrix Composites in 3D Printing Technology”. International Advanced Researches and Engineering Journal 8, no. 2 (August 2024): 102-15. https://doi.org/10.35860/iarej.1484042.
EndNote Kaptan A, Kartal F (August 1, 2024) A review on integration of carbon fiber and polymer matrix composites in 3D printing technology. International Advanced Researches and Engineering Journal 8 2 102–115.
IEEE A. Kaptan and F. Kartal, “A review on integration of carbon fiber and polymer matrix composites in 3D printing technology”, Int. Adv. Res. Eng. J., vol. 8, no. 2, pp. 102–115, 2024, doi: 10.35860/iarej.1484042.
ISNAD Kaptan, Arslan - Kartal, Fuat. “A Review on Integration of Carbon Fiber and Polymer Matrix Composites in 3D Printing Technology”. International Advanced Researches and Engineering Journal 8/2 (August 2024), 102-115. https://doi.org/10.35860/iarej.1484042.
JAMA Kaptan A, Kartal F. A review on integration of carbon fiber and polymer matrix composites in 3D printing technology. Int. Adv. Res. Eng. J. 2024;8:102–115.
MLA Kaptan, Arslan and Fuat Kartal. “A Review on Integration of Carbon Fiber and Polymer Matrix Composites in 3D Printing Technology”. International Advanced Researches and Engineering Journal, vol. 8, no. 2, 2024, pp. 102-15, doi:10.35860/iarej.1484042.
Vancouver Kaptan A, Kartal F. A review on integration of carbon fiber and polymer matrix composites in 3D printing technology. Int. Adv. Res. Eng. J. 2024;8(2):102-15.



Creative Commons License

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.