Research Article
BibTex RIS Cite
Year 2020, , 173 - 179, 15.12.2020
https://doi.org/10.35860/iarej.729395

Abstract

References

  • 1. Deuis, R. L., Subramanian, C., Yellup, J. M., Dry Sliding Wear of Aluminium Composite-A Review. Composites Science and Technology, 1997. 57: p. 415-435.
  • 2. Surappa, M. K., Aluminium Matrix Composites: Challenges and Opportunities. Sadhana, 2003. 28: p. 319-334.
  • 3. Singla, M., Dwivedi, D. D., Singh, L., Chawla, V., Development of Aluminum Based Silicon Carbide Particulate Metal Matrix Composite. Journal of Minerals Materials Characterization & Engineering, 2009. 8(6): p. 455-467.
  • 4. Şimşek, İ, Şimşek, D., Özyürek, D. The effect of diffirent sliding speeds on wear bheavior of ZrO2 reinforcement aluminum matrix composite materials. International Advanced researches and Engineering Journal, 2020. 4(1):p. 1-7.
  • 5. Cetinel, H., Ayvaz, M., The Effect of Aging Parameters and Roughness on the Wear Properties of Aluminum Alloy 6082. Materials Testing, 2014. 56: p. 988-993.
  • 6. Narayan, S., Rajeshkannan, An., Workability Behavior of Powder Metallurgy Carbide Reinforced Aluminum Composites During Hot Forging. Materials and Manufacturing Processes, 2015. 30: p. 1196-1201.
  • 7. German, R. M., Suri, P., Park, S. J., Review: Liquid Phase Sintering. Journal of Materials Science, 2009. 44(1): p. 1-39.
  • 8. Kehl, W., Fischmeister, H. F., Liquid Phase Sintering of Al-Cu Compacts. Powder Metall, 1980. 23(3): p. 113–119.
  • 9. Oh, M. C., Ahn, B., Effect of Mg Composition on Sintering Behaviours and Mechanical Properties of Al-Cu-Mg Alloy. Transactions of Nonferrous Metals Society of China, 2014. 24: p.53-58.
  • 10. Schaffer, G. B., Yao, J.-Y., Bonner, S. J., Crossin, E., Pas., S. J., Hill, A. J., The Effect of Tin and Nitrogen on Liquid Phase Sintering of Al-Cu-Mg-Si Alloys. Acta Materialia, 2008. 56: p. 2651-2624.
  • 11. Rudianto, H., Jang, G. J., Yang, S. S., Kim, Y. J., Dlouhy, I., Evaluation of Sintering Behavior of Premix Al-Zn-Mg-Cu Alloy Powder. Advances in Materials Science and Engineering, 2015. 2015: p. 1-8.
  • 12. Schaffer, G. B., Sercombe, T. B., Lumley, R. N., Liquid Phase Sintering of Aluminium Alloys. Materials Chemistry and Physics, 2001. 67: p. 85-91.
  • 13. Gokce, A., Findik, F., Mechanical and Physical Properties of Sintering Aluminum Powders. Journal of Achievements in Materials and Manufactıring Engineering, 2008. 30(2): p. 157-164.
  • 14. Gokce, A., Findik, F., Kurt, A. O., Effects of Mg content on Aging Behavior of Al4CuxMg PM Alloy. Materials and Design, 2013. 46: p. 524-531.
  • 15. Boland, C. D., Hexemer Jr, R. L., Donaldson, I. W., Bishop, D. P., Industrial Processing of a Novel Al-Cu-Mg Powder Metallurgy Alloy. Materials Science & Engineering A, 2013. 559: p. 902-908.
  • 16. Gokce, A., Findik, F., Kurt, A. O., Microstructural Examination and Properties of Premixed Al-Cu-Mg Powder Metallurgy Alloy. Materials Characterization, 2011. 62: p. 730-735.
  • 17. Daran, J. D., Grönbeck, H., Hellman, A., Mechanism for Limiting Thickness of Thin Oxide Films on Aluminum. Physical Review Letters, 2014. 112: p. 146103/1-5.
  • 18. Mamedov, V., Spark Plasma Sintering as Advanced PM Sintering Method. Powder Metallurgy, 2002. 45(49): p. 322-328.
  • 19. Matli, P. R., Shakoor, R. A., Mohammed, A. M. A., Gupta, M., Microwave Rapid Sintering of Al-Metal Matrix Composites: A Review on the Effect of Reinforcements, Microstructure and Mechanical Properties. Metals, 2016. 6: p. 1-19.
  • 20. Ghasali, E., Yazdani-rad, R., Asadian, K., Ebadzadeg, T., Production of Al-SiC-TiC Hybrid Composites Using Pure and 1056 Aluminum Powders Prepared Through Microwave and Conventional Heatinmg Methods. Journal of Alloy and Compounds, 2017. 690: p. 521-518.
  • 21. Ghasali, E., Pakseresht, A. H., Alizadeh, M., Shirvanimoghaddam, K., Ebadzadeh, T., Vanadium Carbide Reinforced Aluminum Matrix Composite Prepared by Conventional, Microwave and Spark Plasma Sintering. Journal of Alloys an Comounds, 2016. 688: p. 527-533.
  • 22. Guo, B., Ni, S., Yi, J., Shen, R., Tang, Z., Du, Y., Song, M., Microstructures and Mechanical Properties of Carbon Nanotubes Reinforced Pure Aluminum Composites Synthesized by Spark Plasma Sintering and Hot Rolling. Materials Science & Engineering A, 2017. 698: p. 282-288.
  • 23. Zadra, M., Casari, F., Girardini, L., Molinari, A., Spark Plasma Sintering of Pure Aluminium powder: mechanical properties and fracture analysis. Powder Metallurgyi 2007. 50(1): p. 40-45.
  • 24. Zeng, W., Qin, W., Gu, C., Sun, H., Ma, Y., Cao, X., Microstructre and Properties of Pure Aluminum Prepared by Spark Plasma Sintering. Metallurgical Research and. Technology, 2019. 166: p. 1-6.
  • 25. Kwon, H., Park, D. H., Park, Y., Silvian, J. F., Kawasaki, A., Park, Y., Spark Plasma Sintering Behavior of pure Aluminum Depending on Various Sintering Temperatures. Met. Mater. Int., 2010. 16(1): p. 71-75.
  • 26. Nakamura, M., Chida, N., Ohba, T., Sugaya, Y., Development of Rapid Sintering Technique on Carbon Steels by the Induction Heating Method. Journal of the Japan Society of Powder and Powder Metallurgy, 1999. 46(5): p. 538-543.
  • 27. Çavdar, U., Atik, E., Investigation of Conventional- and Induction- Sintered Iron and Iron-Based Powder Metal Compacts. The Journal of the Minerals, Metals & Materials Society, 2014. 66(6): p. 1027-1034.
  • 28. Oh, S.-J., Kim, B.-S., Shon, I.-J., Mechanical Properties and Rapid Consolidation of Nanostructured WC and WC-Al2O3 Composites by High-Frequency Induction-Heated Sintering. Int. Journal of Refractory Metals and Hard Metals, 2016. 58: p. 189-195.
  • 29. Kim. H.-C., Kim, D.-K., Woo, K.-D., Ko, I.-Y., Shon, I.-J., Consolidation of Bindersless WC-TiC by High Frequency Induction Heating Sintering. Int. Journal of Refractory Metals and Hard Metals, 2008. 26: p. 48-54.
  • 30. Shon, I.-J., High-Frequency Induction Sintering of B4C Ceramics and Its Mechanical Properties. Ceramics International, 2016. 42: p. 19406-19412.
  • 31. Bayerl, T., Schledjewski, R., Mitschang, P., Industion Heating of Thermoplastic Materials by Particulate Heating Promoters. Polymers & Polymer Composites, 2012. 20(4): p. 333-342.
  • 32. Takajo, S., Endo, I., Kajinaga, Y., Itoh, S., Complex Magnetic Permeability of Packed Metal Powders. Trans. JIM, 1979. 20: p. 617-626.
  • 33. Crocoran, J., Nagy, P.B., Compensation of the Skin Effect in Low-Frequemcy Potential Drop Measurements. Journal of Nondestructive Evaluation, 2016. 35:p. 35-58
  • 34. Hermal, W., Leitner, G., Krumphold, R., Review of Induction Sintering: Fundementals and Applications. Powder Metal, 1980. 3: p. 130-135.
  • 35. ASTM E10-15a, Standard Test Method for Brinell Hardness of Metallic Materials, ASTM International, West Conshohocken, PA, 2015, www.astm.org.
  • 36. Bol’shechenko, A. G., Gaiduchenko, A. K., Radomysel’skii I. D., Zhukovskaya, L. A., Kostyuk, V. A., Effect of Some Factors on the Compressibility of Iron Powders. Soviet Powder Metallurgy and Metal Ceramics, 1972. 11: p.952-955.
  • 37. German, R. M., Powder Metallurgy Science.1984, U.S.A. Metal Powder Industries Federation.

The comparative study of conventional and ultra-high frequency induction sintering behavior of pure aluminum

Year 2020, , 173 - 179, 15.12.2020
https://doi.org/10.35860/iarej.729395

Abstract

In this study, compressibility, and conventional and ultra-high frequency induction sintering behaviors of 99.8% purity and 50-70 µm size range aluminum powders were investigated. In the compressibility studies, uniaxial-cold pressing method was used. Green samples were produced in the range of 50-275 MPa using different pressures. By measuring the apparent densities of the produced samples, the optimum compressibility pressure was determined as 200 MPa. Pure aluminum powder metal samples produced with this ideal pressing pressure were sintered in both classical and ultra-high frequency induction methods in the range of 500-600 oC. Sintering was performed as 40 min in the traditional method and 5 min in the ultra-high frequency induction sintering method. As a result of the tests carried out in this study, it was determined that pure aluminum samples were successfully sintered with a high frequency induction system in a shorter time than traditional sintering method.

References

  • 1. Deuis, R. L., Subramanian, C., Yellup, J. M., Dry Sliding Wear of Aluminium Composite-A Review. Composites Science and Technology, 1997. 57: p. 415-435.
  • 2. Surappa, M. K., Aluminium Matrix Composites: Challenges and Opportunities. Sadhana, 2003. 28: p. 319-334.
  • 3. Singla, M., Dwivedi, D. D., Singh, L., Chawla, V., Development of Aluminum Based Silicon Carbide Particulate Metal Matrix Composite. Journal of Minerals Materials Characterization & Engineering, 2009. 8(6): p. 455-467.
  • 4. Şimşek, İ, Şimşek, D., Özyürek, D. The effect of diffirent sliding speeds on wear bheavior of ZrO2 reinforcement aluminum matrix composite materials. International Advanced researches and Engineering Journal, 2020. 4(1):p. 1-7.
  • 5. Cetinel, H., Ayvaz, M., The Effect of Aging Parameters and Roughness on the Wear Properties of Aluminum Alloy 6082. Materials Testing, 2014. 56: p. 988-993.
  • 6. Narayan, S., Rajeshkannan, An., Workability Behavior of Powder Metallurgy Carbide Reinforced Aluminum Composites During Hot Forging. Materials and Manufacturing Processes, 2015. 30: p. 1196-1201.
  • 7. German, R. M., Suri, P., Park, S. J., Review: Liquid Phase Sintering. Journal of Materials Science, 2009. 44(1): p. 1-39.
  • 8. Kehl, W., Fischmeister, H. F., Liquid Phase Sintering of Al-Cu Compacts. Powder Metall, 1980. 23(3): p. 113–119.
  • 9. Oh, M. C., Ahn, B., Effect of Mg Composition on Sintering Behaviours and Mechanical Properties of Al-Cu-Mg Alloy. Transactions of Nonferrous Metals Society of China, 2014. 24: p.53-58.
  • 10. Schaffer, G. B., Yao, J.-Y., Bonner, S. J., Crossin, E., Pas., S. J., Hill, A. J., The Effect of Tin and Nitrogen on Liquid Phase Sintering of Al-Cu-Mg-Si Alloys. Acta Materialia, 2008. 56: p. 2651-2624.
  • 11. Rudianto, H., Jang, G. J., Yang, S. S., Kim, Y. J., Dlouhy, I., Evaluation of Sintering Behavior of Premix Al-Zn-Mg-Cu Alloy Powder. Advances in Materials Science and Engineering, 2015. 2015: p. 1-8.
  • 12. Schaffer, G. B., Sercombe, T. B., Lumley, R. N., Liquid Phase Sintering of Aluminium Alloys. Materials Chemistry and Physics, 2001. 67: p. 85-91.
  • 13. Gokce, A., Findik, F., Mechanical and Physical Properties of Sintering Aluminum Powders. Journal of Achievements in Materials and Manufactıring Engineering, 2008. 30(2): p. 157-164.
  • 14. Gokce, A., Findik, F., Kurt, A. O., Effects of Mg content on Aging Behavior of Al4CuxMg PM Alloy. Materials and Design, 2013. 46: p. 524-531.
  • 15. Boland, C. D., Hexemer Jr, R. L., Donaldson, I. W., Bishop, D. P., Industrial Processing of a Novel Al-Cu-Mg Powder Metallurgy Alloy. Materials Science & Engineering A, 2013. 559: p. 902-908.
  • 16. Gokce, A., Findik, F., Kurt, A. O., Microstructural Examination and Properties of Premixed Al-Cu-Mg Powder Metallurgy Alloy. Materials Characterization, 2011. 62: p. 730-735.
  • 17. Daran, J. D., Grönbeck, H., Hellman, A., Mechanism for Limiting Thickness of Thin Oxide Films on Aluminum. Physical Review Letters, 2014. 112: p. 146103/1-5.
  • 18. Mamedov, V., Spark Plasma Sintering as Advanced PM Sintering Method. Powder Metallurgy, 2002. 45(49): p. 322-328.
  • 19. Matli, P. R., Shakoor, R. A., Mohammed, A. M. A., Gupta, M., Microwave Rapid Sintering of Al-Metal Matrix Composites: A Review on the Effect of Reinforcements, Microstructure and Mechanical Properties. Metals, 2016. 6: p. 1-19.
  • 20. Ghasali, E., Yazdani-rad, R., Asadian, K., Ebadzadeg, T., Production of Al-SiC-TiC Hybrid Composites Using Pure and 1056 Aluminum Powders Prepared Through Microwave and Conventional Heatinmg Methods. Journal of Alloy and Compounds, 2017. 690: p. 521-518.
  • 21. Ghasali, E., Pakseresht, A. H., Alizadeh, M., Shirvanimoghaddam, K., Ebadzadeh, T., Vanadium Carbide Reinforced Aluminum Matrix Composite Prepared by Conventional, Microwave and Spark Plasma Sintering. Journal of Alloys an Comounds, 2016. 688: p. 527-533.
  • 22. Guo, B., Ni, S., Yi, J., Shen, R., Tang, Z., Du, Y., Song, M., Microstructures and Mechanical Properties of Carbon Nanotubes Reinforced Pure Aluminum Composites Synthesized by Spark Plasma Sintering and Hot Rolling. Materials Science & Engineering A, 2017. 698: p. 282-288.
  • 23. Zadra, M., Casari, F., Girardini, L., Molinari, A., Spark Plasma Sintering of Pure Aluminium powder: mechanical properties and fracture analysis. Powder Metallurgyi 2007. 50(1): p. 40-45.
  • 24. Zeng, W., Qin, W., Gu, C., Sun, H., Ma, Y., Cao, X., Microstructre and Properties of Pure Aluminum Prepared by Spark Plasma Sintering. Metallurgical Research and. Technology, 2019. 166: p. 1-6.
  • 25. Kwon, H., Park, D. H., Park, Y., Silvian, J. F., Kawasaki, A., Park, Y., Spark Plasma Sintering Behavior of pure Aluminum Depending on Various Sintering Temperatures. Met. Mater. Int., 2010. 16(1): p. 71-75.
  • 26. Nakamura, M., Chida, N., Ohba, T., Sugaya, Y., Development of Rapid Sintering Technique on Carbon Steels by the Induction Heating Method. Journal of the Japan Society of Powder and Powder Metallurgy, 1999. 46(5): p. 538-543.
  • 27. Çavdar, U., Atik, E., Investigation of Conventional- and Induction- Sintered Iron and Iron-Based Powder Metal Compacts. The Journal of the Minerals, Metals & Materials Society, 2014. 66(6): p. 1027-1034.
  • 28. Oh, S.-J., Kim, B.-S., Shon, I.-J., Mechanical Properties and Rapid Consolidation of Nanostructured WC and WC-Al2O3 Composites by High-Frequency Induction-Heated Sintering. Int. Journal of Refractory Metals and Hard Metals, 2016. 58: p. 189-195.
  • 29. Kim. H.-C., Kim, D.-K., Woo, K.-D., Ko, I.-Y., Shon, I.-J., Consolidation of Bindersless WC-TiC by High Frequency Induction Heating Sintering. Int. Journal of Refractory Metals and Hard Metals, 2008. 26: p. 48-54.
  • 30. Shon, I.-J., High-Frequency Induction Sintering of B4C Ceramics and Its Mechanical Properties. Ceramics International, 2016. 42: p. 19406-19412.
  • 31. Bayerl, T., Schledjewski, R., Mitschang, P., Industion Heating of Thermoplastic Materials by Particulate Heating Promoters. Polymers & Polymer Composites, 2012. 20(4): p. 333-342.
  • 32. Takajo, S., Endo, I., Kajinaga, Y., Itoh, S., Complex Magnetic Permeability of Packed Metal Powders. Trans. JIM, 1979. 20: p. 617-626.
  • 33. Crocoran, J., Nagy, P.B., Compensation of the Skin Effect in Low-Frequemcy Potential Drop Measurements. Journal of Nondestructive Evaluation, 2016. 35:p. 35-58
  • 34. Hermal, W., Leitner, G., Krumphold, R., Review of Induction Sintering: Fundementals and Applications. Powder Metal, 1980. 3: p. 130-135.
  • 35. ASTM E10-15a, Standard Test Method for Brinell Hardness of Metallic Materials, ASTM International, West Conshohocken, PA, 2015, www.astm.org.
  • 36. Bol’shechenko, A. G., Gaiduchenko, A. K., Radomysel’skii I. D., Zhukovskaya, L. A., Kostyuk, V. A., Effect of Some Factors on the Compressibility of Iron Powders. Soviet Powder Metallurgy and Metal Ceramics, 1972. 11: p.952-955.
  • 37. German, R. M., Powder Metallurgy Science.1984, U.S.A. Metal Powder Industries Federation.
There are 37 citations in total.

Details

Primary Language English
Subjects Material Characterization
Journal Section Research Articles
Authors

Burak Gül This is me 0000-0002-4446-4259

Levent Ulvi Gezici 0000-0002-0353-3270

Mehmet Ayvaz 0000-0002-9671-8679

Uğur Çavdar 0000-0002-3434-6670

Publication Date December 15, 2020
Submission Date April 29, 2020
Acceptance Date May 27, 2020
Published in Issue Year 2020

Cite

APA Gül, B., Gezici, L. U., Ayvaz, M., Çavdar, U. (2020). The comparative study of conventional and ultra-high frequency induction sintering behavior of pure aluminum. International Advanced Researches and Engineering Journal, 4(3), 173-179. https://doi.org/10.35860/iarej.729395
AMA Gül B, Gezici LU, Ayvaz M, Çavdar U. The comparative study of conventional and ultra-high frequency induction sintering behavior of pure aluminum. Int. Adv. Res. Eng. J. December 2020;4(3):173-179. doi:10.35860/iarej.729395
Chicago Gül, Burak, Levent Ulvi Gezici, Mehmet Ayvaz, and Uğur Çavdar. “The Comparative Study of Conventional and Ultra-High Frequency Induction Sintering Behavior of Pure Aluminum”. International Advanced Researches and Engineering Journal 4, no. 3 (December 2020): 173-79. https://doi.org/10.35860/iarej.729395.
EndNote Gül B, Gezici LU, Ayvaz M, Çavdar U (December 1, 2020) The comparative study of conventional and ultra-high frequency induction sintering behavior of pure aluminum. International Advanced Researches and Engineering Journal 4 3 173–179.
IEEE B. Gül, L. U. Gezici, M. Ayvaz, and U. Çavdar, “The comparative study of conventional and ultra-high frequency induction sintering behavior of pure aluminum”, Int. Adv. Res. Eng. J., vol. 4, no. 3, pp. 173–179, 2020, doi: 10.35860/iarej.729395.
ISNAD Gül, Burak et al. “The Comparative Study of Conventional and Ultra-High Frequency Induction Sintering Behavior of Pure Aluminum”. International Advanced Researches and Engineering Journal 4/3 (December 2020), 173-179. https://doi.org/10.35860/iarej.729395.
JAMA Gül B, Gezici LU, Ayvaz M, Çavdar U. The comparative study of conventional and ultra-high frequency induction sintering behavior of pure aluminum. Int. Adv. Res. Eng. J. 2020;4:173–179.
MLA Gül, Burak et al. “The Comparative Study of Conventional and Ultra-High Frequency Induction Sintering Behavior of Pure Aluminum”. International Advanced Researches and Engineering Journal, vol. 4, no. 3, 2020, pp. 173-9, doi:10.35860/iarej.729395.
Vancouver Gül B, Gezici LU, Ayvaz M, Çavdar U. The comparative study of conventional and ultra-high frequency induction sintering behavior of pure aluminum. Int. Adv. Res. Eng. J. 2020;4(3):173-9.

Cited By


Effect of graphene content and induction hot pressing on tribological and mechanical behavior of Al6061-based composites
Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications
https://doi.org/10.1177/14644207241228698








Creative Commons License

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.