Research Article
BibTex RIS Cite
Year 2021, , 26 - 30, 15.04.2021
https://doi.org/10.35860/iarej.803508

Abstract

References

  • 1. Wenzel, A.R., Localization of the Mean and Mean Squared Intensities, and Intensity Fluctuations, of Waves Propagating in a One-Dimensional Random Medium. Wave Motion, 1985. 7(6): p. 589-600.
  • 2. Andrews, L.C., Laser Beam Propagation Through Random Media. 2 ed. 2005, Washington: SPIE.
  • 3. Schmidt, J.D., Numerical Simulation Optical Wave Propagation with examples in MATLAB. 2010: SPIE.
  • 4. de Hoop, M.V., J.H. Le Rousseau, and R.S. Wu, Generalization of the phase-screen approximation for the scattering of acoustic waves. Wave Motion, 2000. 31(1): p. 43-70.
  • 5. Eyyuboglu, H.T. and M. Bayraktar, SNR bounds of FSO links and its evaluation for selected beams. Journal of Modern Optics, 2015. 62(16): p. 1316-1322.
  • 6. Bayraktar, M., Estimation of scintillation and bit error rate performance of sine hollow beam via random phase screen. Optik, 2019. 188: p. 147-154.
  • 7. Bayraktar, M., Scintillation and bit error rate calculation of Mathieu-Gauss beam in turbulence. Journal of Ambient Intelligence and Humanized Computing, 2020.
  • 8. Bayraktar, M., Scintillation and bit error rate analysis of cylindrical-sinc Gaussian beam. Physica Scripta, 2020. 95(11).
  • 9. Eyyuboglu, H.T. and M. Bayraktar, Propagation properties of cylindrical sinc Gaussian beam. Journal of Modern Optics, 2016. 63(17): p. 1706-1712.
  • 10. Eyyuboglu, H.T., Optical communication system using Gaussian vortex beams. Journal of the Optical Society of America a-Optics Image Science and Vision, 2020. 37(10): p. 1531-1538.
  • 11. Eyyuboglu, H.T. and E. Sermutlu, Partially coherent Airy beam and its propagation in turbulent media. Applied Physics B-Lasers and Optics, 2013. 110(4): p. 451-457.
  • 12. Eyyuboglu, H.T., Scintillation behavior of Airy beam. Optics and Laser Technology, 2013. 47: p. 232-236.
  • 13. Liu, X.L., et al., Scintillation properties of a truncated flat-topped beam in a weakly turbulent atmosphere. Optics and Laser Technology, 2013. 45: p. 587-592.
  • 14. Rondon-Ojeda, I. and F. Soto-Eguibar, Properties of the Poynting vector for invariant beams: Negative propagation in Weber beams. Wave Motion, 2018. 78: p. 176-184.
  • 15. Wu, H. and X. Yang, The Eulerian Gaussian beam method for high frequency wave propagation in the reduced momentum space. Wave Motion, 2013. 50(6): p. 1036-1049.
  • 16. Duan, K.L. and B.D. Lu, Four-petal Gaussian beams and their propagation. Optics Communications, 2006. 261(2): p. 327-331.
  • 17. Guo, L.N., Z.L. Tang, and W. Wan, Propagation of a four-petal Gaussian vortex beam through a paraxial ABCD optical system. Optik, 2014. 125(19): p. 5542-5545.
  • 18. Liu, D.J., et al., Evolution properties of four-petal Gaussian vortex beam propagating in uniaxial crystals orthogonal to the optical axis. European Physical Journal D, 2015. 69(9).
  • 19. Liu, D.J., et al., Properties of a four-petal Lorentz-Gauss beam propagating in uniaxial crystal orthogonal to the optical axis. Optik, 2019. 183: p. 257-265.
  • 20. Zhou, G.Q. and Y. Fan, M-2 factor of four-petal Gaussian beam. Chinese Physics B, 2008. 17(10): p. 3708-3712.
  • 21. Tang, B., Propagation of four-petal Gaussian beams in apertured fractional Fourier transforming systems. Journal of Modern Optics, 2009. 56(17): p. 1860-1867.
  • 22. Deng, W.T., et al., Four-petal Lorentz-Gauss vortex beam and its propagation in free space. Optik, 2020. 202.
  • 23. Wu, K.N., et al., Propagation of partially coherent four-petal elliptic Gaussian vortex beams in atmospheric turbulence. Optics Express, 2018. 26(23): p. 30061-30075.
  • 24. Liu, D.J., et al., Evolution properties of partially coherent four-petal Gaussian beams in oceanic turbulence. Journal of Modern Optics, 2017. 64(16): p. 1579-1587.
  • 25. Liu, D.J., et al., Propagation properties of partially coherent four-petal Gaussian vortex beams in oceanic turbulence. Laser Physics, 2017. 27(1): 016001.
  • 26. Yaalou, M., Z. Hricha, and A. Belafhal, Investigation on Airy transform of Four-Petal Gaussian beams. Optical and Quantum Electronics, 2020. 52: 165.
  • 27. Bayraktar, M. and H.T. Eyyuboglu, Propagation properties of optical bottle beam in turbulence. Optical Engineering, 2019. 58(3): 036104.

Effect of aperture averaging on four petal Gaussian beams in atmospheric turbulence

Year 2021, , 26 - 30, 15.04.2021
https://doi.org/10.35860/iarej.803508

Abstract

Aperture averaged scintillation of four petal Gaussian beam is studied in this article. Split step propagation approach which is used in wave propagation applications is selected to model atmospheric turbulence. Results are plotted in two types. First type is the analysis of aperture averaged scintillation versus propagation distance for constant receiver aperture. Second ones involve scintillation performance applying aperture averaging at constant distance. All results are compared with Gauss beam since commercial lasers generally radiates in Gaussian distribution. We observe that four petal Gaussian beam becomes more advantageous under moderate turbulence than weak one. In other point of view, it is possible to obtain less scintillation index by increasing beam order. Our results are applicable optical applications operating in atmosphere.

References

  • 1. Wenzel, A.R., Localization of the Mean and Mean Squared Intensities, and Intensity Fluctuations, of Waves Propagating in a One-Dimensional Random Medium. Wave Motion, 1985. 7(6): p. 589-600.
  • 2. Andrews, L.C., Laser Beam Propagation Through Random Media. 2 ed. 2005, Washington: SPIE.
  • 3. Schmidt, J.D., Numerical Simulation Optical Wave Propagation with examples in MATLAB. 2010: SPIE.
  • 4. de Hoop, M.V., J.H. Le Rousseau, and R.S. Wu, Generalization of the phase-screen approximation for the scattering of acoustic waves. Wave Motion, 2000. 31(1): p. 43-70.
  • 5. Eyyuboglu, H.T. and M. Bayraktar, SNR bounds of FSO links and its evaluation for selected beams. Journal of Modern Optics, 2015. 62(16): p. 1316-1322.
  • 6. Bayraktar, M., Estimation of scintillation and bit error rate performance of sine hollow beam via random phase screen. Optik, 2019. 188: p. 147-154.
  • 7. Bayraktar, M., Scintillation and bit error rate calculation of Mathieu-Gauss beam in turbulence. Journal of Ambient Intelligence and Humanized Computing, 2020.
  • 8. Bayraktar, M., Scintillation and bit error rate analysis of cylindrical-sinc Gaussian beam. Physica Scripta, 2020. 95(11).
  • 9. Eyyuboglu, H.T. and M. Bayraktar, Propagation properties of cylindrical sinc Gaussian beam. Journal of Modern Optics, 2016. 63(17): p. 1706-1712.
  • 10. Eyyuboglu, H.T., Optical communication system using Gaussian vortex beams. Journal of the Optical Society of America a-Optics Image Science and Vision, 2020. 37(10): p. 1531-1538.
  • 11. Eyyuboglu, H.T. and E. Sermutlu, Partially coherent Airy beam and its propagation in turbulent media. Applied Physics B-Lasers and Optics, 2013. 110(4): p. 451-457.
  • 12. Eyyuboglu, H.T., Scintillation behavior of Airy beam. Optics and Laser Technology, 2013. 47: p. 232-236.
  • 13. Liu, X.L., et al., Scintillation properties of a truncated flat-topped beam in a weakly turbulent atmosphere. Optics and Laser Technology, 2013. 45: p. 587-592.
  • 14. Rondon-Ojeda, I. and F. Soto-Eguibar, Properties of the Poynting vector for invariant beams: Negative propagation in Weber beams. Wave Motion, 2018. 78: p. 176-184.
  • 15. Wu, H. and X. Yang, The Eulerian Gaussian beam method for high frequency wave propagation in the reduced momentum space. Wave Motion, 2013. 50(6): p. 1036-1049.
  • 16. Duan, K.L. and B.D. Lu, Four-petal Gaussian beams and their propagation. Optics Communications, 2006. 261(2): p. 327-331.
  • 17. Guo, L.N., Z.L. Tang, and W. Wan, Propagation of a four-petal Gaussian vortex beam through a paraxial ABCD optical system. Optik, 2014. 125(19): p. 5542-5545.
  • 18. Liu, D.J., et al., Evolution properties of four-petal Gaussian vortex beam propagating in uniaxial crystals orthogonal to the optical axis. European Physical Journal D, 2015. 69(9).
  • 19. Liu, D.J., et al., Properties of a four-petal Lorentz-Gauss beam propagating in uniaxial crystal orthogonal to the optical axis. Optik, 2019. 183: p. 257-265.
  • 20. Zhou, G.Q. and Y. Fan, M-2 factor of four-petal Gaussian beam. Chinese Physics B, 2008. 17(10): p. 3708-3712.
  • 21. Tang, B., Propagation of four-petal Gaussian beams in apertured fractional Fourier transforming systems. Journal of Modern Optics, 2009. 56(17): p. 1860-1867.
  • 22. Deng, W.T., et al., Four-petal Lorentz-Gauss vortex beam and its propagation in free space. Optik, 2020. 202.
  • 23. Wu, K.N., et al., Propagation of partially coherent four-petal elliptic Gaussian vortex beams in atmospheric turbulence. Optics Express, 2018. 26(23): p. 30061-30075.
  • 24. Liu, D.J., et al., Evolution properties of partially coherent four-petal Gaussian beams in oceanic turbulence. Journal of Modern Optics, 2017. 64(16): p. 1579-1587.
  • 25. Liu, D.J., et al., Propagation properties of partially coherent four-petal Gaussian vortex beams in oceanic turbulence. Laser Physics, 2017. 27(1): 016001.
  • 26. Yaalou, M., Z. Hricha, and A. Belafhal, Investigation on Airy transform of Four-Petal Gaussian beams. Optical and Quantum Electronics, 2020. 52: 165.
  • 27. Bayraktar, M. and H.T. Eyyuboglu, Propagation properties of optical bottle beam in turbulence. Optical Engineering, 2019. 58(3): 036104.
There are 27 citations in total.

Details

Primary Language English
Subjects Electrical Engineering
Journal Section Research Articles
Authors

Mert Bayraktar 0000-0002-0337-7650

Publication Date April 15, 2021
Submission Date October 1, 2020
Acceptance Date March 6, 2021
Published in Issue Year 2021

Cite

APA Bayraktar, M. (2021). Effect of aperture averaging on four petal Gaussian beams in atmospheric turbulence. International Advanced Researches and Engineering Journal, 5(1), 26-30. https://doi.org/10.35860/iarej.803508
AMA Bayraktar M. Effect of aperture averaging on four petal Gaussian beams in atmospheric turbulence. Int. Adv. Res. Eng. J. April 2021;5(1):26-30. doi:10.35860/iarej.803508
Chicago Bayraktar, Mert. “Effect of Aperture Averaging on Four Petal Gaussian Beams in Atmospheric Turbulence”. International Advanced Researches and Engineering Journal 5, no. 1 (April 2021): 26-30. https://doi.org/10.35860/iarej.803508.
EndNote Bayraktar M (April 1, 2021) Effect of aperture averaging on four petal Gaussian beams in atmospheric turbulence. International Advanced Researches and Engineering Journal 5 1 26–30.
IEEE M. Bayraktar, “Effect of aperture averaging on four petal Gaussian beams in atmospheric turbulence”, Int. Adv. Res. Eng. J., vol. 5, no. 1, pp. 26–30, 2021, doi: 10.35860/iarej.803508.
ISNAD Bayraktar, Mert. “Effect of Aperture Averaging on Four Petal Gaussian Beams in Atmospheric Turbulence”. International Advanced Researches and Engineering Journal 5/1 (April 2021), 26-30. https://doi.org/10.35860/iarej.803508.
JAMA Bayraktar M. Effect of aperture averaging on four petal Gaussian beams in atmospheric turbulence. Int. Adv. Res. Eng. J. 2021;5:26–30.
MLA Bayraktar, Mert. “Effect of Aperture Averaging on Four Petal Gaussian Beams in Atmospheric Turbulence”. International Advanced Researches and Engineering Journal, vol. 5, no. 1, 2021, pp. 26-30, doi:10.35860/iarej.803508.
Vancouver Bayraktar M. Effect of aperture averaging on four petal Gaussian beams in atmospheric turbulence. Int. Adv. Res. Eng. J. 2021;5(1):26-30.



Creative Commons License

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.