Research Article
BibTex RIS Cite
Year 2021, , 268 - 274, 15.08.2021
https://doi.org/10.35860/iarej.813766

Abstract

References

  • 1. Chow, V.T., Maidment, D.R., Mays, L.W., Applied Hydrology. 1988, USA; McGraw-Hill Inc.
  • 2. Zhang, S., L. Kang, L. Zhou, X. Guo, A new modified nonlinear Muskingum model and its parameter estimation using the adaptive genetic algorithm. Hydrology Research, 2016 . 48(1): p. 17-27.
  • 3. Heatherman, W.J., Flood routing on small streams: A review of Muskingum-Cunge, cascading reservoirs, and full dynamic solutions. The degree of Doctor of Philosophy, University of Kansas, 2008, USA.
  • 4. Shaw, E.M., Hydrology in Practice. 2005, USA: Taylor&Francis Group.
  • 5. McCarthy G.T., The unit hydrograph and flood routing. Unpublished m/s conference of US Army Corps of Engineers. 1938, USA.
  • 6. Perumal, M., G. Tayfur, C.M. Rao, G. Gürarslan, Evaluation of a physically based quasi-linear and a conceptually based nonlinear Muskingum methods. Journal of Hydrology, 2017. 546: p. 437-449.
  • 7. Todini, E., A mass conservative and water storage consistent variable parameter Muskingum-Cunge approach. Hydrology and Earth System Sciences Discussions, 2007. 11: p. 1645–1659.
  • 8. Barati, R., G.H. Akbari, S. Rahimi, Flood routing of an unmanaged river basin using Muskingum–Cunge model; field application and numerical experiments. Caspian Journal of Applied Sciences Research, 2013. 2(6): p. 8-20.
  • 9. Ponce, V.M., A. Lugo, Modeling looped ratings in Muskingum-Cunge routing. Journal of Hydrologic Engineering, 2001. 6(2): p. 119–125.
  • 10. Szel, S., C. Gaspar, On the negative weighting factors in the Muskingum-Cunge scheme. Journal Of Hydraulic Research, 2000. 38(4): p. 299-306.
  • 11. Perumal, M., B. Sahoo, Volume conservation controversy of the variable parameter Muskingum–Cunge method. Journal of Hydraulic Engineering, 2008. 134(4): p. 475-485.
  • 12. Price, R.K., Flood routing methods for British rivers. Proceedings of the Institution of Civil Engineers, 1973. 55(12): p. 913-930.
  • 13. Price, R.K., Flood routing. Developments in Hydraulic Engineering. 1985. 3: p. 129-173.
  • 14. Ponce, V.M., V. Yevjevich, Muskingum-Cunge method with variable parameters. Journal of Hydr. Div., 1978. 104(12): p. 1663-1667.
  • 15. Ponce, V.M., F.D. Theurer, Accuracy criteria in diffusion routing. J. Hydr.Div., 1982. 1086: p. 747-757.
  • 16. Ponce, V.M., P.V. Chaganti, Variable-parameter Muskingum-Cunge method revisited. J. Hydrol., 1994. 162(3–4): p. 433-439.
  • 17. Ponce, V.M., A.K. Lohani, C. Scheyhing, Analytical verification of Muskingum-Cunge routing. J. Hydrol., 1996. 174(3–4): p. 235-241.
  • 18. Franchini, M., A. Bernini, S. Berbetta, T. Moramarco, Forecasting discharges at the downstream end of a river reach through two simple Muskingum based procedures. Journal of Hydrology, 2011. 546: p. 437-449.
  • 19. HEC-HMS, version 4.2.1; Hydrologic Modeling System-Technical Reference Manual, U.S. Army Corps of Engineers, Hydrologic Engineering Center, 2000, USA.
  • 20. Miller, W.A., J.A. Cunge, Simplified equations of unsteady flow. Unsteady flow in open channels. Water Resources Publications, 1975.1: p. 216-242,
  • 21. Cunge, J.A., On the subject of a flood propagation method. Hydraulics Res. IAHR., 1969. 7: p. 205-230.
  • 22. Ponce, V.M., Diffusion wave modeling of catchment dynamics. J. Hydr. Engrg., 1986. 112(8): p. 716–727.

Application of the Muskingum-Cunge routing method with variable parameters in a gauged creek reach

Year 2021, , 268 - 274, 15.08.2021
https://doi.org/10.35860/iarej.813766

Abstract

In general, the Muskingum-Cunge method is used to route floods when observed flood data are not available. In this study, applicability of the Variable Parameter Muskingum-Cunge (VPMC) flood routing method was investigated in a gauged creek reach. The reach was between two stream gauging stations. Some physical characteristics of the reach, such as length, bed slope, cross sections, and Manning’s coefficient (n), were determined by using digital topographical map of the reach, inflow, and also outflow data of the two stream gauging stations. The HEC-HMS hydrological model was used to route the inflow hydrograph through using the VPMC method. In conclusion, observed and computed outflow hydrographs were compared and it was seen that the VPMC flood routing method was suitable for the gauged creek reach, which was the subject of this study.

References

  • 1. Chow, V.T., Maidment, D.R., Mays, L.W., Applied Hydrology. 1988, USA; McGraw-Hill Inc.
  • 2. Zhang, S., L. Kang, L. Zhou, X. Guo, A new modified nonlinear Muskingum model and its parameter estimation using the adaptive genetic algorithm. Hydrology Research, 2016 . 48(1): p. 17-27.
  • 3. Heatherman, W.J., Flood routing on small streams: A review of Muskingum-Cunge, cascading reservoirs, and full dynamic solutions. The degree of Doctor of Philosophy, University of Kansas, 2008, USA.
  • 4. Shaw, E.M., Hydrology in Practice. 2005, USA: Taylor&Francis Group.
  • 5. McCarthy G.T., The unit hydrograph and flood routing. Unpublished m/s conference of US Army Corps of Engineers. 1938, USA.
  • 6. Perumal, M., G. Tayfur, C.M. Rao, G. Gürarslan, Evaluation of a physically based quasi-linear and a conceptually based nonlinear Muskingum methods. Journal of Hydrology, 2017. 546: p. 437-449.
  • 7. Todini, E., A mass conservative and water storage consistent variable parameter Muskingum-Cunge approach. Hydrology and Earth System Sciences Discussions, 2007. 11: p. 1645–1659.
  • 8. Barati, R., G.H. Akbari, S. Rahimi, Flood routing of an unmanaged river basin using Muskingum–Cunge model; field application and numerical experiments. Caspian Journal of Applied Sciences Research, 2013. 2(6): p. 8-20.
  • 9. Ponce, V.M., A. Lugo, Modeling looped ratings in Muskingum-Cunge routing. Journal of Hydrologic Engineering, 2001. 6(2): p. 119–125.
  • 10. Szel, S., C. Gaspar, On the negative weighting factors in the Muskingum-Cunge scheme. Journal Of Hydraulic Research, 2000. 38(4): p. 299-306.
  • 11. Perumal, M., B. Sahoo, Volume conservation controversy of the variable parameter Muskingum–Cunge method. Journal of Hydraulic Engineering, 2008. 134(4): p. 475-485.
  • 12. Price, R.K., Flood routing methods for British rivers. Proceedings of the Institution of Civil Engineers, 1973. 55(12): p. 913-930.
  • 13. Price, R.K., Flood routing. Developments in Hydraulic Engineering. 1985. 3: p. 129-173.
  • 14. Ponce, V.M., V. Yevjevich, Muskingum-Cunge method with variable parameters. Journal of Hydr. Div., 1978. 104(12): p. 1663-1667.
  • 15. Ponce, V.M., F.D. Theurer, Accuracy criteria in diffusion routing. J. Hydr.Div., 1982. 1086: p. 747-757.
  • 16. Ponce, V.M., P.V. Chaganti, Variable-parameter Muskingum-Cunge method revisited. J. Hydrol., 1994. 162(3–4): p. 433-439.
  • 17. Ponce, V.M., A.K. Lohani, C. Scheyhing, Analytical verification of Muskingum-Cunge routing. J. Hydrol., 1996. 174(3–4): p. 235-241.
  • 18. Franchini, M., A. Bernini, S. Berbetta, T. Moramarco, Forecasting discharges at the downstream end of a river reach through two simple Muskingum based procedures. Journal of Hydrology, 2011. 546: p. 437-449.
  • 19. HEC-HMS, version 4.2.1; Hydrologic Modeling System-Technical Reference Manual, U.S. Army Corps of Engineers, Hydrologic Engineering Center, 2000, USA.
  • 20. Miller, W.A., J.A. Cunge, Simplified equations of unsteady flow. Unsteady flow in open channels. Water Resources Publications, 1975.1: p. 216-242,
  • 21. Cunge, J.A., On the subject of a flood propagation method. Hydraulics Res. IAHR., 1969. 7: p. 205-230.
  • 22. Ponce, V.M., Diffusion wave modeling of catchment dynamics. J. Hydr. Engrg., 1986. 112(8): p. 716–727.
There are 22 citations in total.

Details

Primary Language English
Subjects Civil Engineering
Journal Section Research Articles
Authors

Hülya Çakır 0000-0001-9731-5989

M. Erol Keskin 0000-0003-3749-5169

Publication Date August 15, 2021
Submission Date October 23, 2020
Acceptance Date April 26, 2021
Published in Issue Year 2021

Cite

APA Çakır, H., & Keskin, M. E. (2021). Application of the Muskingum-Cunge routing method with variable parameters in a gauged creek reach. International Advanced Researches and Engineering Journal, 5(2), 268-274. https://doi.org/10.35860/iarej.813766
AMA Çakır H, Keskin ME. Application of the Muskingum-Cunge routing method with variable parameters in a gauged creek reach. Int. Adv. Res. Eng. J. August 2021;5(2):268-274. doi:10.35860/iarej.813766
Chicago Çakır, Hülya, and M. Erol Keskin. “Application of the Muskingum-Cunge Routing Method With Variable Parameters in a Gauged Creek Reach”. International Advanced Researches and Engineering Journal 5, no. 2 (August 2021): 268-74. https://doi.org/10.35860/iarej.813766.
EndNote Çakır H, Keskin ME (August 1, 2021) Application of the Muskingum-Cunge routing method with variable parameters in a gauged creek reach. International Advanced Researches and Engineering Journal 5 2 268–274.
IEEE H. Çakır and M. E. Keskin, “Application of the Muskingum-Cunge routing method with variable parameters in a gauged creek reach”, Int. Adv. Res. Eng. J., vol. 5, no. 2, pp. 268–274, 2021, doi: 10.35860/iarej.813766.
ISNAD Çakır, Hülya - Keskin, M. Erol. “Application of the Muskingum-Cunge Routing Method With Variable Parameters in a Gauged Creek Reach”. International Advanced Researches and Engineering Journal 5/2 (August 2021), 268-274. https://doi.org/10.35860/iarej.813766.
JAMA Çakır H, Keskin ME. Application of the Muskingum-Cunge routing method with variable parameters in a gauged creek reach. Int. Adv. Res. Eng. J. 2021;5:268–274.
MLA Çakır, Hülya and M. Erol Keskin. “Application of the Muskingum-Cunge Routing Method With Variable Parameters in a Gauged Creek Reach”. International Advanced Researches and Engineering Journal, vol. 5, no. 2, 2021, pp. 268-74, doi:10.35860/iarej.813766.
Vancouver Çakır H, Keskin ME. Application of the Muskingum-Cunge routing method with variable parameters in a gauged creek reach. Int. Adv. Res. Eng. J. 2021;5(2):268-74.



Creative Commons License

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.