Research Article
BibTex RIS Cite
Year 2021, , 405 - 411, 15.12.2021
https://doi.org/10.35860/iarej.934740

Abstract

References

  • 1. Bai, S.L., G.T. Wang, J.M. Hiver, and C. G’Sell Microstructures and me0chanical properties of polypropylene/polyamide 6/polyethelene-octene elastomer blends, Polymer, 2004. 45: p. 3063–3071.
  • 2. Kaştan, A., Y. Yalçın, H. Ünal, and Ş. Talaş, PA6/YYPE /Nanokil Kompozitlerin Mekanik Özelliklerinin İncelenmesi, AKÜ FEMÜBİD, 2015. 15: p. 9–20 (in Turkish).
  • 3. Folkes, M.J., and P.S. Hope, Polymer Blends and Alloys. Polymer Blends and Alloys. 1993, Netherlands: Springer.
  • 4. Utracki, L.A., and C.A.Wilkie, Polymer Blends Handbook. 2014, Netherlands: Springer.
  • 5. Brydson, T.J.A. Brydson’s Plastics Materials. 2017, Eighth Edi. Gilbert M, editor. Cambridge: Elsevier Ltd.
  • 6. Doğan N.F. and A. Erkliğ, On the effect of nano particle inclusion in fiber reinforced composite tensile and flexural behavior, International Advanced Researches and Engineering Journal, 2018. 2(3): p. 240-244.
  • 7. Aras S. and N. Tarakçioğlu, Experimental investigation of the effect of compression pressure on mechanical properties in glass fiber reinforced organic material-based brake pads production, International Advanced Researches and Engineering Journal, 2019. 3(2): p. 11-115.
  • 8. Li H., Y. Wang, C. Zhang, and B. Zhang, Effects of thermal histories on interfacial properties of carbon fiber/polyamide 6 composites: Thickness, modulus, adhesion and shear strength, Composites Part A: Applied Science and Manufacturing, 2016. 85: p. 31–39.
  • 9. Luo H., G. Xiong, C. Ma, D. Li, and Y. Wan, Preparation and performance of long carbon fiber reinforced polyamide 6 composites injection-molded from core/shell structured pellets, Materials and Design, 2014. 64: p. 294–300.
  • 10. Matei E., M. Rapa, A. A. Andras, A. M. Predescu, C. Pantilimon, A. Pica, and C. Predescu, Recycled Polypropylene Improved with Thermoplastic Elastomers, International Journal of Polymer Science, 2017. 2017: 7525923, p. 1-10.
  • 11. Ishigami A., S. Nishitsuji, T. Kurose, and H. Ito, Evaluation of toughness and failure mode of PA6/mSEBS/PS ternary blends with an oil-extended viscoelastic controlled interface, Polymer, 2019. 177: p. 57–64.
  • 12. Lee C. H., Y. M. Lee, H. K. Choi, S. Horiuchi, and T. Kitano, Effect of a functional triblock elastomer on morphology in polyamide 6/polycarbonate blend, Polymer, 1999. 40: p. 6321–6377.
  • 13. Jeon I., M. Lee, S. W. Lee, and J. Y. Jho, Morphology and Mechanical Properties of Polyketone/Polycarbonate Blends Compatibilized with SEBS and Polyamide, Macromolecular Research, 2019. 27: p. 827–832.
  • 14. Oshinski A.J., H. Keskkula, and D. R. Paul, Rubber toughening of polyamides with functionalized block copolymers: 1. Nylon-6, Polymer, 1992. 33(2): p. 268–283.
  • 15. Mengual A., D. Juárez, R. Balart, and S. Ferrándiz, PE-g-MA, PP-g-MA and SEBS-g-MA compatibilizers used in material blends, Procedia Manufacturing, 2017. 13: p. 321–326.
  • 16. De Carvalho A. P. A., and A. S. da Sirqueira, Effect of compatibilization in situ on PA/SEBS blends, 2016. 26: p. 123–128.
  • 17. Oshinski A.J., H. Keskkula, and D. R. Paul, Rubber toughening of polyamides with functionalized block copolymers: 2. Nylon-6.6, Polymer, 1992. 33(2): p. 284–293.
  • 18. Xianwei S., and X. Xu-Ming, Creating supper-tough and strong PA6/ABS blends using multi-phase compatibilizers, Chinese Chemical letters, 2019. 30(1): p. 149–152.
  • 19. Njuguna J., Z. Mouti, and K. Westwood, Toughening mechanisms for glass fiber-reinforced polyamide composites. Chapter 8. Editors; Q., Qin, and J. Ye. Toughening Mechanisms in Composite Materials. 2015, UK: Woodhead Publishing Series. p. 211–232.
  • 20. Thomason J. L., Glass fibre sizing: A review. Composites Part A: Applied Science and Manufacturing, 2019. 127: 105619. p. 1-24.
  • 21. Zhuang R. C, T. Burghardt, R. Plonka, J. W. Liu, and E. Mäder, Affecting glass fibre surfaces and composite properties by two stage sizing application. Express Polymer Letters, 2010. 4: p. 798–808.
  • 22. Xu M., J. Lu, Y. Qiao, L. Wei, T. Liu, P. C. Lee, L. Zhao, and C. B. Park, Toughening mechanism of long chain branched polyamide 6, Materials and Design, 2020. 196: 109173, p. 1-8.
  • 23. Guo K., D. Wang, G. Zhang, J. Song, T. Wu, and J. Qu, Effect of series explosion effects on the fiber length, fiber dispersion and structure properties in glass fiber reinforced polyamide 66, Polymers for Advanced Technologies, 2021. 32: p. 505–13.
  • 24. Xiao Y., X. Mu, B. Wang, W. Hu, J. Wang, F. Zhou, C. Ma, Y., and L. Song, A novel phosphorous-containing polymeric compatibilizer: Effective reinforcement and flame retardancy in glass fiber reinforced polyamide 6 composites, Composites Part B: Engineering, 2021. 205: 108536, p. 1-9.
  • 25. Kawada J., M. Kitou, M. Mouri, T. Mitsuoka, T. Araki, C. Lee, T. Ario, O. Kitou, and A. Usuki, Morphology controlled PA11 bio-alloys with excellent impact strength, ACS Sustainable Chemistry & Engineering, 2016. 4: p. 2158–2164.
  • 26. Kawada J., M. Kitou, M. Mouri, Y. Kato, Y. Katagiri, M. Matsushita, T. Ario, O. Kitoub, and A. Usuki, Super impact absorbing bio-alloys from inedible plants, Green Chemistry. 2017. 19: p. 4503–4508.

Determination of mechanical performance of glass fiber reinforced and elastomer filled polyamide 6 composites

Year 2021, , 405 - 411, 15.12.2021
https://doi.org/10.35860/iarej.934740

Abstract

In this study, the mechanical performances of neat Polyamide 6 (PA6) polymer, 20wt.% glass fiber reinforced PA6, and 8% SEBS elastomer with 20% glass fiber reinforced PA6 composite were investigated. Composite materials were first produced in the form of granules by using a twin-screw extruder. Later, mechanical test samples were molded, in accordance with the American Society of Testing Materials (ASTM) standards, using an injection molding technique. Mechanical parameters such as tensile strength, tensile modulus, elongation at break, impact strength, flexural strength, and flexural modulus were determined by tensile, impact, and bending tests. With the addition of 20wt.% glass fiber reinforcement to the PA6 polymer matrix, properties such as tensile strength, tensile modulus, flexural strength, and flexural modulus increased, while properties such as elongation at break and impact strength decreased. For the 20% glass fiber reinforced PA6 composite with 8% SEBS rubber additive, while the impact strength increased by 177%, other mechanical values decreased. The fractured surface microstructure images of the samples obtained from the tensile tests were examined using a scanning electron microscope.

References

  • 1. Bai, S.L., G.T. Wang, J.M. Hiver, and C. G’Sell Microstructures and me0chanical properties of polypropylene/polyamide 6/polyethelene-octene elastomer blends, Polymer, 2004. 45: p. 3063–3071.
  • 2. Kaştan, A., Y. Yalçın, H. Ünal, and Ş. Talaş, PA6/YYPE /Nanokil Kompozitlerin Mekanik Özelliklerinin İncelenmesi, AKÜ FEMÜBİD, 2015. 15: p. 9–20 (in Turkish).
  • 3. Folkes, M.J., and P.S. Hope, Polymer Blends and Alloys. Polymer Blends and Alloys. 1993, Netherlands: Springer.
  • 4. Utracki, L.A., and C.A.Wilkie, Polymer Blends Handbook. 2014, Netherlands: Springer.
  • 5. Brydson, T.J.A. Brydson’s Plastics Materials. 2017, Eighth Edi. Gilbert M, editor. Cambridge: Elsevier Ltd.
  • 6. Doğan N.F. and A. Erkliğ, On the effect of nano particle inclusion in fiber reinforced composite tensile and flexural behavior, International Advanced Researches and Engineering Journal, 2018. 2(3): p. 240-244.
  • 7. Aras S. and N. Tarakçioğlu, Experimental investigation of the effect of compression pressure on mechanical properties in glass fiber reinforced organic material-based brake pads production, International Advanced Researches and Engineering Journal, 2019. 3(2): p. 11-115.
  • 8. Li H., Y. Wang, C. Zhang, and B. Zhang, Effects of thermal histories on interfacial properties of carbon fiber/polyamide 6 composites: Thickness, modulus, adhesion and shear strength, Composites Part A: Applied Science and Manufacturing, 2016. 85: p. 31–39.
  • 9. Luo H., G. Xiong, C. Ma, D. Li, and Y. Wan, Preparation and performance of long carbon fiber reinforced polyamide 6 composites injection-molded from core/shell structured pellets, Materials and Design, 2014. 64: p. 294–300.
  • 10. Matei E., M. Rapa, A. A. Andras, A. M. Predescu, C. Pantilimon, A. Pica, and C. Predescu, Recycled Polypropylene Improved with Thermoplastic Elastomers, International Journal of Polymer Science, 2017. 2017: 7525923, p. 1-10.
  • 11. Ishigami A., S. Nishitsuji, T. Kurose, and H. Ito, Evaluation of toughness and failure mode of PA6/mSEBS/PS ternary blends with an oil-extended viscoelastic controlled interface, Polymer, 2019. 177: p. 57–64.
  • 12. Lee C. H., Y. M. Lee, H. K. Choi, S. Horiuchi, and T. Kitano, Effect of a functional triblock elastomer on morphology in polyamide 6/polycarbonate blend, Polymer, 1999. 40: p. 6321–6377.
  • 13. Jeon I., M. Lee, S. W. Lee, and J. Y. Jho, Morphology and Mechanical Properties of Polyketone/Polycarbonate Blends Compatibilized with SEBS and Polyamide, Macromolecular Research, 2019. 27: p. 827–832.
  • 14. Oshinski A.J., H. Keskkula, and D. R. Paul, Rubber toughening of polyamides with functionalized block copolymers: 1. Nylon-6, Polymer, 1992. 33(2): p. 268–283.
  • 15. Mengual A., D. Juárez, R. Balart, and S. Ferrándiz, PE-g-MA, PP-g-MA and SEBS-g-MA compatibilizers used in material blends, Procedia Manufacturing, 2017. 13: p. 321–326.
  • 16. De Carvalho A. P. A., and A. S. da Sirqueira, Effect of compatibilization in situ on PA/SEBS blends, 2016. 26: p. 123–128.
  • 17. Oshinski A.J., H. Keskkula, and D. R. Paul, Rubber toughening of polyamides with functionalized block copolymers: 2. Nylon-6.6, Polymer, 1992. 33(2): p. 284–293.
  • 18. Xianwei S., and X. Xu-Ming, Creating supper-tough and strong PA6/ABS blends using multi-phase compatibilizers, Chinese Chemical letters, 2019. 30(1): p. 149–152.
  • 19. Njuguna J., Z. Mouti, and K. Westwood, Toughening mechanisms for glass fiber-reinforced polyamide composites. Chapter 8. Editors; Q., Qin, and J. Ye. Toughening Mechanisms in Composite Materials. 2015, UK: Woodhead Publishing Series. p. 211–232.
  • 20. Thomason J. L., Glass fibre sizing: A review. Composites Part A: Applied Science and Manufacturing, 2019. 127: 105619. p. 1-24.
  • 21. Zhuang R. C, T. Burghardt, R. Plonka, J. W. Liu, and E. Mäder, Affecting glass fibre surfaces and composite properties by two stage sizing application. Express Polymer Letters, 2010. 4: p. 798–808.
  • 22. Xu M., J. Lu, Y. Qiao, L. Wei, T. Liu, P. C. Lee, L. Zhao, and C. B. Park, Toughening mechanism of long chain branched polyamide 6, Materials and Design, 2020. 196: 109173, p. 1-8.
  • 23. Guo K., D. Wang, G. Zhang, J. Song, T. Wu, and J. Qu, Effect of series explosion effects on the fiber length, fiber dispersion and structure properties in glass fiber reinforced polyamide 66, Polymers for Advanced Technologies, 2021. 32: p. 505–13.
  • 24. Xiao Y., X. Mu, B. Wang, W. Hu, J. Wang, F. Zhou, C. Ma, Y., and L. Song, A novel phosphorous-containing polymeric compatibilizer: Effective reinforcement and flame retardancy in glass fiber reinforced polyamide 6 composites, Composites Part B: Engineering, 2021. 205: 108536, p. 1-9.
  • 25. Kawada J., M. Kitou, M. Mouri, T. Mitsuoka, T. Araki, C. Lee, T. Ario, O. Kitou, and A. Usuki, Morphology controlled PA11 bio-alloys with excellent impact strength, ACS Sustainable Chemistry & Engineering, 2016. 4: p. 2158–2164.
  • 26. Kawada J., M. Kitou, M. Mouri, Y. Kato, Y. Katagiri, M. Matsushita, T. Ario, O. Kitoub, and A. Usuki, Super impact absorbing bio-alloys from inedible plants, Green Chemistry. 2017. 19: p. 4503–4508.
There are 26 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering, Composite and Hybrid Materials
Journal Section Research Articles
Authors

Hüseyin Ünal 0000-0003-0521-6647

Kemal Ermiş 0000-0003-3110-2731

Publication Date December 15, 2021
Submission Date May 8, 2021
Acceptance Date September 10, 2021
Published in Issue Year 2021

Cite

APA Ünal, H., & Ermiş, K. (2021). Determination of mechanical performance of glass fiber reinforced and elastomer filled polyamide 6 composites. International Advanced Researches and Engineering Journal, 5(3), 405-411. https://doi.org/10.35860/iarej.934740
AMA Ünal H, Ermiş K. Determination of mechanical performance of glass fiber reinforced and elastomer filled polyamide 6 composites. Int. Adv. Res. Eng. J. December 2021;5(3):405-411. doi:10.35860/iarej.934740
Chicago Ünal, Hüseyin, and Kemal Ermiş. “Determination of Mechanical Performance of Glass Fiber Reinforced and Elastomer Filled Polyamide 6 Composites”. International Advanced Researches and Engineering Journal 5, no. 3 (December 2021): 405-11. https://doi.org/10.35860/iarej.934740.
EndNote Ünal H, Ermiş K (December 1, 2021) Determination of mechanical performance of glass fiber reinforced and elastomer filled polyamide 6 composites. International Advanced Researches and Engineering Journal 5 3 405–411.
IEEE H. Ünal and K. Ermiş, “Determination of mechanical performance of glass fiber reinforced and elastomer filled polyamide 6 composites”, Int. Adv. Res. Eng. J., vol. 5, no. 3, pp. 405–411, 2021, doi: 10.35860/iarej.934740.
ISNAD Ünal, Hüseyin - Ermiş, Kemal. “Determination of Mechanical Performance of Glass Fiber Reinforced and Elastomer Filled Polyamide 6 Composites”. International Advanced Researches and Engineering Journal 5/3 (December 2021), 405-411. https://doi.org/10.35860/iarej.934740.
JAMA Ünal H, Ermiş K. Determination of mechanical performance of glass fiber reinforced and elastomer filled polyamide 6 composites. Int. Adv. Res. Eng. J. 2021;5:405–411.
MLA Ünal, Hüseyin and Kemal Ermiş. “Determination of Mechanical Performance of Glass Fiber Reinforced and Elastomer Filled Polyamide 6 Composites”. International Advanced Researches and Engineering Journal, vol. 5, no. 3, 2021, pp. 405-11, doi:10.35860/iarej.934740.
Vancouver Ünal H, Ermiş K. Determination of mechanical performance of glass fiber reinforced and elastomer filled polyamide 6 composites. Int. Adv. Res. Eng. J. 2021;5(3):405-11.



Creative Commons License

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.