Review
BibTex RIS Cite

Reduction of operation temperature in SOFCs utilizing perovskites: Review

Year 2022, , 56 - 67, 15.04.2022
https://doi.org/10.35860/iarej.972864

Abstract

Fuel cells are electrochemical devices utilized for converting chemical energy to electrical energy. Solid Oxide Fuel Cells (SOFCs) have several advantages over other kinds. For instance, high energy efficiency expanded fuel flexibility, low environmental pollutant emission are the properties of SOFCs that make them superior to other fuel cell types. Due to these special characteristics, SOFCs are gained a great deal of attraction. These fuel cells consist of different main operating parts, a cathode, an anode, and electrolyte which each of them demands special materials to operate with the most efficiency. SOFCs mostly operate in high temperatures (800-1000 ᵒC). Reducing the operating temperature to lower than 600 ᵒC or intermediate temperatures 600-800 ᵒC is one of the methods that can make them more practical devices. Perovskite oxides can be used effectively as all main parts of SOFCs because of their excellent properties like electrical and ionic conductivities, oxygen ion vacancies, great catalytic properties, thermal durability, and chemical stability to decrease the operating temperature. In this review, numerous perovskite-based materials utilized in the anode and the cathode electrodes of SOFCs are investigated in the most recent, advanced, and novel works. The perovskite materials, their properties, and their influence on the fuel cell’s performance, and in some cases the sulfur tolerance of the materials when H2S co-exists in the fuel of the fuel cell are reviewed in this paper Adding different dopants in A-site and B-site of the perovskite oxides is the most effective way to modify the characteristics of the materials. This review can provide great data on the possible perovskite oxides with the capability of enhancing the efficiency of SOFCs by reducing the operating temperature, and their most decisive and significant characteristics, like composition, structure, electrical conductivity, electrochemical and mechanical properties for research groups working on solid oxide fuel cells.

Supporting Institution

the University of Sakarya-Turkey & the University of Tabriz -Iran

Thanks

We would like to thank the University of Tabriz and the University of Sakarya for their kind cooperation in project planning and support.

References

  • 1. Kanmaz, İ. and Ü. Abdullah, Silicon dioxide thin films prepared by spin coating for the application of solar cells. International Advanced Researches and Engineering Journal, 2021. 5(1): p. 14-18.
  • 2. Turkboyları, E.Y. and A.N. Yuksel, Use of solar panels in greenhouse soil disinfection, International Advanced Researches and Engineering Journal, 2018. 2(2): p. 195-199.
  • 3. Sengodan, S., et al., Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells, Nature materials, 2015. 14(2): p. 205-209.
  • 4. Abdalla, A.M., et al., Achievements and trends of solid oxide fuel cells in clean energy field: a perspective review, Frontiers in Energy, 2018: p. 1-24.
  • 5. Mendonça, C., A. Ferreira, and D.M. Santos, Towards the Commercialization of Solid Oxide Fuel Cells, Recent Advances in Materials and Integration Strategies. Fuels, 2021. 2(4): p. 393-419.
  • 6. Jun, A., et al., Perovskite as a cathode material: a review of its role in solid‐oxide fuel cell technology, ChemElectroChem, 2016. 3(4): p. 511-530.
  • 7. Afroze, S., et al., Latest development of double perovskite electrode materials for solid oxide fuel cells: a review, Frontiers in Energy, 2019. 13(4): p. 770-797.
  • 8. Wachsman, E.D. and K.T. Lee, Lowering the temperature of solid oxide fuel cells, Science, 2011. 334(6058): p. 935-939.
  • 9. Thakur, S., O. Pandey, and K. Singh, A comparative structural, thermal and electrical study of Ca2+, Sr2+ substituted BiMnO3, Solid State Ionics, 2014. 268: p. 23-30.
  • 10. Kaur, P. and K. Singh, Review of perovskite-structure related cathode materials for solid oxide fuel cells, Ceramics International, 2020. 46(5): p. 5521-5535.
  • 11. Ding, P., et al., Review on Ruddlesden–Popper perovskites as cathode for solid oxide fuel cells, Journal of Physics: Materials, 2021. 4(2): p. 022002.
  • 12. Tarragó, D.P., et al., Perovskites used in fuel cells. Pan, Likun; Zhu, Guang (ed.). Perovskite materials: synthesis, characterisation, properties, and applications [recurso eletrônico], [Rijeka, Croatia]: InTech, 2016. ch. 21, p. 619-637, 2016.
  • 13. Azad, A.K., Synthesis, structure, and magnetic properties of double perovskites of the type A2MnBO6 and A2FeBO6;(A= Ca, Sr, Ba, La; B= W, Mo, Cr). Thesis for: PhD, Advisor: Professor Sten Eriksson, March 2004.
  • 14. Atta, N.F., A. Galal, and E. El-Ads, Perovskite nanomaterials–synthesis, characterization, and applications, Perovskite Materials–Synthesis, Characterisation, Properties, and Applications; Pan, L., Ed, 2016: p. 107-151.
  • 15. Zhou, X., et al., Progress in La-doped SrTiO 3 (LST)-based anode materials for solid oxide fuel cells, Rsc Advances, 2014. 4(1): p. 118-131.
  • 16. Johnsson, M. and P. Lemmens, Crystallography and chemistry of perovskites, Handbook of magnetism and advanced magnetic materials, 2007.
  • 17. Burnwal, S.K., S. Bharadwaj, and P. Kistaiah, Review on MIEC cathode materials for solid oxide fuel cells, Journal of Molecular and Engineering Materials, 2016. 4(02): p. 1630001.
  • 18. Sengodan, S., et al., Self-decorated MnO nanoparticles on double perovskite solid oxide fuel cell anode by in situ exsolution, ACS Sustainable Chemistry & Engineering, 2017. 5(10): p. 9207-9213.
  • 19. Klyndyuk, A.I., et al., Layered Oxygen-Deficient Double Perovskites as Promising Cathode Materials for Solid Oxide Fuel Cells, Materials, 2022. 15(1): p. 141.
  • 20. Gazda, M., et al. Perovskites in solid oxide fuel cells. in Solid State Phenomena, 2012. Trans Tech Publ.
  • 21. Hussain, S. and L. Yangping, Review of solid oxide fuel cell materials: cathode, anode, and electrolyte, Energy Transitions, 2020: p. 1-14.
  • 22. Lan, R., et al., A perovskite oxide with high conductivities in both air and reducing atmosphere for use as electrode for solid oxide fuel cells, Scientific reports, 2016. 6(1): p. 1-8.
  • 23. Zhou, Q., et al., Electrochemical performances of LaBaCuFeO+x and LaBaCuCoO5+x as potential cathode materials for intermediate-temperature solid oxide fuel cells, Electrochemistry Communications, 2009. 11(1): p. 80-83.
  • 24. Meng, X., et al., Characterization of Pr1-xSrxCo0.8Fe0.2O3- δ (0.2≤ x≤ 0.6) cathode materials for intermediate-temperature solid oxide fuel cells, Journal of Power Sources, 2008. 183(2): p. 581-585.
  • 25. Ding, H. and X. Xue, Cobalt-free layered perovskite GdBaFe2O5+x as a novel cathode for intermediate temperature solid oxide fuel cells, Journal of Power Sources, 2010. 195(15): p. 4718-4721.
  • 26. Bebelis, S., et al., Electrochemical characterization of perovskite-based SOFC cathodes, Journal of applied electrochemistry, 2007. 37(1): p. 15-20.
  • 27. Zhou, Q., et al., LaSrMnCoO5+ δ as cathode for intermediate-temperature solid oxide fuel cells, Electrochemistry communications, 2012. 19: p. 36-38.
  • 28. Irshad, M., et al., Electrochemical evaluation of mixed ionic electronic perovskite cathode LaNi1-xCoxO3-- δ for IT-SOFC synthesized by high temperature decomposition, International Journal of Hydrogen Energy, 2021. 46(17): p. 10448-10456.
  • 29. Ling, Y., et al., Investigation of cobalt-free cathode material Sm0.5Sr0.5Fe0.8Cu0.2O3− δ for intermediate temperature solid oxide fuel cell, International journal of hydrogen energy, 2010. 35(13): p. 6905-6910.
  • 30. Shen, F. and K. Lu, Perovskite-type La0.6Sr0.4Co0.2Fe0.8O3, Ba0.5Sr0.5Co0.2Fe0.8O3, and Sm0.5Sr0.5Co0.2Fe0.8O3 cathode materials and their chromium poisoning for solid oxide fuel cells, Electrochimica Acta, 2016. 211: p. 445-452.
  • 31. Mostafavi, E., A. Babaei, and A. Ataie, La0.6Sr0.4Co0.2Fe0.8O3 perovskite cathode for intermediate temperature solid oxide fuel cells: a comparative study, Iranian Journal of Hydrogen & Fuel Cell, 2015. 1(4): p. 239-246.
  • 32. Choi, S., et al., Chemical compatibility, redox behavior, and electrochemical performance of Nd1-xSrxCoO3− δ cathodes based on Ce1.9Gd0.1O1.95 for intermediate-temperature solid oxide fuel cells, Electrochimica acta, 2012. 81: p. 217-223.
  • 33. Wu, Y.-C., et al, Properties and microstructural analysis of La1-xSrxCoO3−δ (x= 0–0.6) cathode materials, Ceramics International, 2017. 43(2): p. 2460-2470.
  • 34. Hammouche, A., E. Siebert, and A. Hammou, Crystallographic, thermal and electrochemical properties of the system La1-xSrxMnO3 for high temperature solid electrolyte fuel cells, Materials Research Bulletin, 1989. 24(3): p. 367-380.
  • 35. Ullmann, H., et al., Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes, Solid state ionics, 2000. 138(1-2): p. 79-90.
  • 36. Kong, X., et al., NdBaCu2O5+ δ and NdBa0.5Sr0.5Cu2O5+ δ layered perovskite oxides as cathode materials for IT-SOFCs, International Journal of Hydrogen Energy, 2015. 40(46): p. 16477-16483.
  • 37. Baumann, F., et al., Quantitative comparison of mixed conducting SOFC cathode materials by means of thin film model electrodes, Journal of The Electrochemical Society, 2007. 154(9): p. B931.
  • 38. Gędziorowski, B., et al, La1-xBaxCo0.2Fe0.8O3- δ perovskites for application in intermediate temperature SOFCs, Solid State Ionics, 2012. 225: p. 437-442.
  • 39. Li, N., et al., Characterization of GdBaCo2O5+ δ cathode for IT-SOFCs, Journal of Alloys and Compounds, 2008. 454(1-2): p. 274-279.
  • 40. Park, S., et al., Strontium doping effect on high-performance PrBa1-xSrxCo2O5+ δ as a cathode material for IT-SOFCs, ECS Electrochemistry Letters, 2012. 1(5): p. F29.
  • 41. Ishihara, T., et al., Doped PrMnO3 perovskite oxide as a new cathode of solid oxide fuel cells for low temperature operation, Journal of the Electrochemical Society, 1995. 142(5): p. 1519.
  • 42. Zhou, X. and F. Zhou, Application of La0.3Sr0.7Fe0.7Ti0.3O3-δ GDC electrolyte in LT-SOFC, International Journal of Hydrogen Energy, 2021. 46(15): p. 9988-9995.
  • 43. Aliotta, C., et al., Direct methane oxidation on La1-xSrxCr1-yFeyO3- δ perovskite-type oxides as potential anode for intermediate temperature solid oxide fuel cells, Applied Catalysis B: Environmental, 2016. 180: p. 424-433.
  • 44. Cowin, P.I., et al., Recent progress in the development of anode materials for solid oxide fuel cells, Advanced Energy Materials, 2011. 1(3): p. 314-332.
  • 45. Cheng, Y., et al., Investigation of Ba fully occupied A-site BaCo0.7Fe0.3-xNbxO3- δ perovskite stabilized by low concentration of Nb for oxygen permeation membrane, Journal of Membrane Science, 2008. 322(2): p. 484-490.
  • 46. Chen, X., et al., High-performance cathode-supported SOFC with perovskite anode operating in weakly humidified hydrogen and methane, Fuel Cells Bulletin, 2007. 2007(6): p. 12-16.
  • 47. Danilovic, N., et al., Correlation of fuel cell anode electrocatalytic and ex situ catalytic activity of perovskites La0.75Sr0.255Cr0.5X0.5O3- δ (X= Ti, Mn, Fe, Co), Chemistry of Materials, 2010. 22(3): p. 957-965.
  • 48. Fowler, D.E., et al., Stable, low polarization resistance solid oxide fuel cell anodes: La1-x Sr x Cr1-xFe x O3- δ (x= 0.2–0.67), Chemistry of Materials, 2014. 26(10): p. 3113-3120.
  • 49. Dos Santos-Gómez, L., et al., Chemical stability and compatibility of double perovskite anode materials for SOFCs, Solid State Ionics, 2013. 239: p. 1-7.
  • 50 Li, X., et al., Electrical conductivity and structural stability of La-doped SrTiO3 with A-site deficiency as anode materials for solid oxide fuel cells, International journal of hydrogen energy, 2010. 35(15): p. 7913-7918.
  • 51. Sun, Y.-F., et al., Molybdenum doped Pr0.5Ba0.5MnO3- δ (Mo-PBMO) double perovskite as a potential solid oxide fuel cell anode material, Journal of Power Sources, 2016. 301: p. 237-241.
  • 52. Steiger, P., et al., Sulfur poisoning recovery on a solid oxide fuel cell anode material through reversible segregation of nickel, Chemistry of Materials, 2019. 31(3): p. 748-758.
  • 53. Yoon, J.S., et al., Catalytic activity of perovskite-type doped La0.08Sr0.92Ti1-xMxO3- δ (M= Mn, Fe, and Co) oxides for methane oxidation, international journal of hydrogen energy, 2014. 39(15): p. 7955-7962.
  • 54. Miller, D.N. and J.T. Irvine, B-site doping of lanthanum strontium titanate for solid oxide fuel cell anodes, Journal of Power Sources, 2011. 196(17): p. 7323-7327.
  • 55. Fu, Q., F. Tietz, and D. Stöver, La0.4Sr0.6Ti1-x Mn x O3- δ perovskites as anode materials for solid oxide fuel cells, Journal of the Electrochemical Society, 2006. 153(4): p. D74.
  • 56. Choi, H., et al., Effect of Ce doping on the performance and stability of strontium cobalt ferrite perovskites as SOFC anode catalysts, Topics in Catalysis, 2015. 58(4-6): p. 359-374.
  • 57. Cascos, V., J.A. Alonso, and M.T. Fernández-Díaz, Novel Mg-doped SrMoO3 perovskites designed as anode materials for solid oxide fuel cells, Materials, 2016. 9(7): p. 588.
  • 58. Cui, S.-H., et al., Cobalt doped LaSrTiO 3- δ as an anode catalyst: effect of Co nanoparticle precipitation on SOFCs operating on H2 S-containing hydrogen, Journal of Materials Chemistry A, 2013. 1(34): p. 9689-9696.
  • 59. Ding, H., et al., A redox-stable direct-methane solid oxide fuel cell (SOFC) with Sr2FeNb0.2Mo0.8O6- δ double perovskite as anode material, Journal of Power Sources, 2016. 327: p. 573-579.
  • 60. Shah, M. Y, et al, Semiconductor Nb-Doped SrTiO3- δ Perovskite Electrolyte for a Ceramic Fuel Cell, ACS Applied Energy Materials, 2021. 4(1): p. 365-375.
  • 61. Radenahmad, N., et al, A new high performance proton‐conducting electrolyte for next generation solid oxide fuel cells, Energy Technology, 2020. 8(9): 2000486.
  • 62. Mohammadi, A., et al, All-Perovskite Solid Oxide Fuel Cells, Synthesis and Characterization. (2009).
  • 63. Faro, M. L., and Aricò, A. S,. Electrochemical behaviour of an all-perovskite-based intermediate temperature solid oxide fuel cell, International journal of hydrogen energy, 2013. 38(34): p. 14773-14778.
  • 64 . Ishihara, T., et al, Nickel–Gd-doped CeO2 cermet anode for intermediate temperature operating solid oxide fuel cells using LaGaO3-based perovskite electrolyte, Solid State Ionics, 2000. 132(3-4): p 209-216.
  • 65. Shah, M. Y., et al, Semiconductor Fe-doped SrTiO3- δ perovskite electrolyte for low-temperature solid oxide fuel cell (LT-SOFC) operating below 520 ᵒC, Int J Hydrogen Energy, 2020. 45(28): 1447.
  • 66. Hsu, M. F., et al, Solid oxide fuel cell fabricated using all-perovskite materials, Electrochemical and Solid State Letters, 2006. 9(4): A193.
  • 67. Martínez, J.,et al, Performance of XSCoF (X= Ba, La and Sm) and LSCrX′(X′= Mn, Fe and Al) perovskite-structure materials on LSGM electrolyte for IT-SOFC, Electrochimica acta, 2007. 52(9): p. 2950-2958.
  • 68. Tao, S. W., et al, An efficient solid oxide fuel cell based upon single phase perovskites, Advanced Materials, 2005. 17(14): p. 1734-1737.
  • 69. Serra, J. M., and Meulenberg, W. A thin, Film proton BaZr0.85Y0.15O3 conducting electrolytes: toward an intermediate‐temperature solid oxide fuel cell alternative, Journal of the American Ceramic Society, . 2007. 90(7): p. 2082-2089.
  • 70. Ishihara, T., et al, Intermediate temperature solid oxide electrolysis cell using LaGaO3 based perovskite electrolyte, Energy & Environmental Science, 2010. 3(5): p. 665-672.
  • 71. Glisenti A. et al, Reversible, all-perovskite SOFCs based on La, Sr gallates, Int. Journal of Hydrogen Energy, 2020. 45(2020): 29155e29165.
  • 72. Chuangang Yao et al., Copper doped SrFe 0.9-x Cu x W 0.1 O 3-δ (x = 0–0.3) perovskites as cathode materials for IT-SOFCs, Journal of Alloys and Compounds, 2021. 868: 159127.
  • 73. Shah, M. Y., et al, Advanced fuel cell based on semiconductor perovskite LaeBaZrYO3- δ as an electrolyte material operating at low temperature 550 ᵒC, Int. J. Hydrogen Energy, 2020. p.45, 51.
  • 74. Irshad M., et al,, Electrochemical Investigations of BaCe0.7-x SmxZr0.2Y0.1 O3-δ Sintered at a Low Sintering Temperature as a Perovskite Electrolyte for IT-SOFCs, Sustainability 2021, 13: p. 12595.
  • 75. Kostogloudis, G. C., et al, Chemical compatibility of alternative perovskite oxide SOFC cathodes with doped lanthanum gallate solid electrolyte, Solid State Ionics, 2000. 134(1-2), p. 127-138.
  • 76. Kato, H., et al, Electrical conductivity of Al-doped La1-xSrxScO3 perovskite-type oxides as electrolyte materials for low-temperature SOFC, Solid State Ionics, 2003. 159(3-4), p. 217-222.
Year 2022, , 56 - 67, 15.04.2022
https://doi.org/10.35860/iarej.972864

Abstract

References

  • 1. Kanmaz, İ. and Ü. Abdullah, Silicon dioxide thin films prepared by spin coating for the application of solar cells. International Advanced Researches and Engineering Journal, 2021. 5(1): p. 14-18.
  • 2. Turkboyları, E.Y. and A.N. Yuksel, Use of solar panels in greenhouse soil disinfection, International Advanced Researches and Engineering Journal, 2018. 2(2): p. 195-199.
  • 3. Sengodan, S., et al., Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells, Nature materials, 2015. 14(2): p. 205-209.
  • 4. Abdalla, A.M., et al., Achievements and trends of solid oxide fuel cells in clean energy field: a perspective review, Frontiers in Energy, 2018: p. 1-24.
  • 5. Mendonça, C., A. Ferreira, and D.M. Santos, Towards the Commercialization of Solid Oxide Fuel Cells, Recent Advances in Materials and Integration Strategies. Fuels, 2021. 2(4): p. 393-419.
  • 6. Jun, A., et al., Perovskite as a cathode material: a review of its role in solid‐oxide fuel cell technology, ChemElectroChem, 2016. 3(4): p. 511-530.
  • 7. Afroze, S., et al., Latest development of double perovskite electrode materials for solid oxide fuel cells: a review, Frontiers in Energy, 2019. 13(4): p. 770-797.
  • 8. Wachsman, E.D. and K.T. Lee, Lowering the temperature of solid oxide fuel cells, Science, 2011. 334(6058): p. 935-939.
  • 9. Thakur, S., O. Pandey, and K. Singh, A comparative structural, thermal and electrical study of Ca2+, Sr2+ substituted BiMnO3, Solid State Ionics, 2014. 268: p. 23-30.
  • 10. Kaur, P. and K. Singh, Review of perovskite-structure related cathode materials for solid oxide fuel cells, Ceramics International, 2020. 46(5): p. 5521-5535.
  • 11. Ding, P., et al., Review on Ruddlesden–Popper perovskites as cathode for solid oxide fuel cells, Journal of Physics: Materials, 2021. 4(2): p. 022002.
  • 12. Tarragó, D.P., et al., Perovskites used in fuel cells. Pan, Likun; Zhu, Guang (ed.). Perovskite materials: synthesis, characterisation, properties, and applications [recurso eletrônico], [Rijeka, Croatia]: InTech, 2016. ch. 21, p. 619-637, 2016.
  • 13. Azad, A.K., Synthesis, structure, and magnetic properties of double perovskites of the type A2MnBO6 and A2FeBO6;(A= Ca, Sr, Ba, La; B= W, Mo, Cr). Thesis for: PhD, Advisor: Professor Sten Eriksson, March 2004.
  • 14. Atta, N.F., A. Galal, and E. El-Ads, Perovskite nanomaterials–synthesis, characterization, and applications, Perovskite Materials–Synthesis, Characterisation, Properties, and Applications; Pan, L., Ed, 2016: p. 107-151.
  • 15. Zhou, X., et al., Progress in La-doped SrTiO 3 (LST)-based anode materials for solid oxide fuel cells, Rsc Advances, 2014. 4(1): p. 118-131.
  • 16. Johnsson, M. and P. Lemmens, Crystallography and chemistry of perovskites, Handbook of magnetism and advanced magnetic materials, 2007.
  • 17. Burnwal, S.K., S. Bharadwaj, and P. Kistaiah, Review on MIEC cathode materials for solid oxide fuel cells, Journal of Molecular and Engineering Materials, 2016. 4(02): p. 1630001.
  • 18. Sengodan, S., et al., Self-decorated MnO nanoparticles on double perovskite solid oxide fuel cell anode by in situ exsolution, ACS Sustainable Chemistry & Engineering, 2017. 5(10): p. 9207-9213.
  • 19. Klyndyuk, A.I., et al., Layered Oxygen-Deficient Double Perovskites as Promising Cathode Materials for Solid Oxide Fuel Cells, Materials, 2022. 15(1): p. 141.
  • 20. Gazda, M., et al. Perovskites in solid oxide fuel cells. in Solid State Phenomena, 2012. Trans Tech Publ.
  • 21. Hussain, S. and L. Yangping, Review of solid oxide fuel cell materials: cathode, anode, and electrolyte, Energy Transitions, 2020: p. 1-14.
  • 22. Lan, R., et al., A perovskite oxide with high conductivities in both air and reducing atmosphere for use as electrode for solid oxide fuel cells, Scientific reports, 2016. 6(1): p. 1-8.
  • 23. Zhou, Q., et al., Electrochemical performances of LaBaCuFeO+x and LaBaCuCoO5+x as potential cathode materials for intermediate-temperature solid oxide fuel cells, Electrochemistry Communications, 2009. 11(1): p. 80-83.
  • 24. Meng, X., et al., Characterization of Pr1-xSrxCo0.8Fe0.2O3- δ (0.2≤ x≤ 0.6) cathode materials for intermediate-temperature solid oxide fuel cells, Journal of Power Sources, 2008. 183(2): p. 581-585.
  • 25. Ding, H. and X. Xue, Cobalt-free layered perovskite GdBaFe2O5+x as a novel cathode for intermediate temperature solid oxide fuel cells, Journal of Power Sources, 2010. 195(15): p. 4718-4721.
  • 26. Bebelis, S., et al., Electrochemical characterization of perovskite-based SOFC cathodes, Journal of applied electrochemistry, 2007. 37(1): p. 15-20.
  • 27. Zhou, Q., et al., LaSrMnCoO5+ δ as cathode for intermediate-temperature solid oxide fuel cells, Electrochemistry communications, 2012. 19: p. 36-38.
  • 28. Irshad, M., et al., Electrochemical evaluation of mixed ionic electronic perovskite cathode LaNi1-xCoxO3-- δ for IT-SOFC synthesized by high temperature decomposition, International Journal of Hydrogen Energy, 2021. 46(17): p. 10448-10456.
  • 29. Ling, Y., et al., Investigation of cobalt-free cathode material Sm0.5Sr0.5Fe0.8Cu0.2O3− δ for intermediate temperature solid oxide fuel cell, International journal of hydrogen energy, 2010. 35(13): p. 6905-6910.
  • 30. Shen, F. and K. Lu, Perovskite-type La0.6Sr0.4Co0.2Fe0.8O3, Ba0.5Sr0.5Co0.2Fe0.8O3, and Sm0.5Sr0.5Co0.2Fe0.8O3 cathode materials and their chromium poisoning for solid oxide fuel cells, Electrochimica Acta, 2016. 211: p. 445-452.
  • 31. Mostafavi, E., A. Babaei, and A. Ataie, La0.6Sr0.4Co0.2Fe0.8O3 perovskite cathode for intermediate temperature solid oxide fuel cells: a comparative study, Iranian Journal of Hydrogen & Fuel Cell, 2015. 1(4): p. 239-246.
  • 32. Choi, S., et al., Chemical compatibility, redox behavior, and electrochemical performance of Nd1-xSrxCoO3− δ cathodes based on Ce1.9Gd0.1O1.95 for intermediate-temperature solid oxide fuel cells, Electrochimica acta, 2012. 81: p. 217-223.
  • 33. Wu, Y.-C., et al, Properties and microstructural analysis of La1-xSrxCoO3−δ (x= 0–0.6) cathode materials, Ceramics International, 2017. 43(2): p. 2460-2470.
  • 34. Hammouche, A., E. Siebert, and A. Hammou, Crystallographic, thermal and electrochemical properties of the system La1-xSrxMnO3 for high temperature solid electrolyte fuel cells, Materials Research Bulletin, 1989. 24(3): p. 367-380.
  • 35. Ullmann, H., et al., Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes, Solid state ionics, 2000. 138(1-2): p. 79-90.
  • 36. Kong, X., et al., NdBaCu2O5+ δ and NdBa0.5Sr0.5Cu2O5+ δ layered perovskite oxides as cathode materials for IT-SOFCs, International Journal of Hydrogen Energy, 2015. 40(46): p. 16477-16483.
  • 37. Baumann, F., et al., Quantitative comparison of mixed conducting SOFC cathode materials by means of thin film model electrodes, Journal of The Electrochemical Society, 2007. 154(9): p. B931.
  • 38. Gędziorowski, B., et al, La1-xBaxCo0.2Fe0.8O3- δ perovskites for application in intermediate temperature SOFCs, Solid State Ionics, 2012. 225: p. 437-442.
  • 39. Li, N., et al., Characterization of GdBaCo2O5+ δ cathode for IT-SOFCs, Journal of Alloys and Compounds, 2008. 454(1-2): p. 274-279.
  • 40. Park, S., et al., Strontium doping effect on high-performance PrBa1-xSrxCo2O5+ δ as a cathode material for IT-SOFCs, ECS Electrochemistry Letters, 2012. 1(5): p. F29.
  • 41. Ishihara, T., et al., Doped PrMnO3 perovskite oxide as a new cathode of solid oxide fuel cells for low temperature operation, Journal of the Electrochemical Society, 1995. 142(5): p. 1519.
  • 42. Zhou, X. and F. Zhou, Application of La0.3Sr0.7Fe0.7Ti0.3O3-δ GDC electrolyte in LT-SOFC, International Journal of Hydrogen Energy, 2021. 46(15): p. 9988-9995.
  • 43. Aliotta, C., et al., Direct methane oxidation on La1-xSrxCr1-yFeyO3- δ perovskite-type oxides as potential anode for intermediate temperature solid oxide fuel cells, Applied Catalysis B: Environmental, 2016. 180: p. 424-433.
  • 44. Cowin, P.I., et al., Recent progress in the development of anode materials for solid oxide fuel cells, Advanced Energy Materials, 2011. 1(3): p. 314-332.
  • 45. Cheng, Y., et al., Investigation of Ba fully occupied A-site BaCo0.7Fe0.3-xNbxO3- δ perovskite stabilized by low concentration of Nb for oxygen permeation membrane, Journal of Membrane Science, 2008. 322(2): p. 484-490.
  • 46. Chen, X., et al., High-performance cathode-supported SOFC with perovskite anode operating in weakly humidified hydrogen and methane, Fuel Cells Bulletin, 2007. 2007(6): p. 12-16.
  • 47. Danilovic, N., et al., Correlation of fuel cell anode electrocatalytic and ex situ catalytic activity of perovskites La0.75Sr0.255Cr0.5X0.5O3- δ (X= Ti, Mn, Fe, Co), Chemistry of Materials, 2010. 22(3): p. 957-965.
  • 48. Fowler, D.E., et al., Stable, low polarization resistance solid oxide fuel cell anodes: La1-x Sr x Cr1-xFe x O3- δ (x= 0.2–0.67), Chemistry of Materials, 2014. 26(10): p. 3113-3120.
  • 49. Dos Santos-Gómez, L., et al., Chemical stability and compatibility of double perovskite anode materials for SOFCs, Solid State Ionics, 2013. 239: p. 1-7.
  • 50 Li, X., et al., Electrical conductivity and structural stability of La-doped SrTiO3 with A-site deficiency as anode materials for solid oxide fuel cells, International journal of hydrogen energy, 2010. 35(15): p. 7913-7918.
  • 51. Sun, Y.-F., et al., Molybdenum doped Pr0.5Ba0.5MnO3- δ (Mo-PBMO) double perovskite as a potential solid oxide fuel cell anode material, Journal of Power Sources, 2016. 301: p. 237-241.
  • 52. Steiger, P., et al., Sulfur poisoning recovery on a solid oxide fuel cell anode material through reversible segregation of nickel, Chemistry of Materials, 2019. 31(3): p. 748-758.
  • 53. Yoon, J.S., et al., Catalytic activity of perovskite-type doped La0.08Sr0.92Ti1-xMxO3- δ (M= Mn, Fe, and Co) oxides for methane oxidation, international journal of hydrogen energy, 2014. 39(15): p. 7955-7962.
  • 54. Miller, D.N. and J.T. Irvine, B-site doping of lanthanum strontium titanate for solid oxide fuel cell anodes, Journal of Power Sources, 2011. 196(17): p. 7323-7327.
  • 55. Fu, Q., F. Tietz, and D. Stöver, La0.4Sr0.6Ti1-x Mn x O3- δ perovskites as anode materials for solid oxide fuel cells, Journal of the Electrochemical Society, 2006. 153(4): p. D74.
  • 56. Choi, H., et al., Effect of Ce doping on the performance and stability of strontium cobalt ferrite perovskites as SOFC anode catalysts, Topics in Catalysis, 2015. 58(4-6): p. 359-374.
  • 57. Cascos, V., J.A. Alonso, and M.T. Fernández-Díaz, Novel Mg-doped SrMoO3 perovskites designed as anode materials for solid oxide fuel cells, Materials, 2016. 9(7): p. 588.
  • 58. Cui, S.-H., et al., Cobalt doped LaSrTiO 3- δ as an anode catalyst: effect of Co nanoparticle precipitation on SOFCs operating on H2 S-containing hydrogen, Journal of Materials Chemistry A, 2013. 1(34): p. 9689-9696.
  • 59. Ding, H., et al., A redox-stable direct-methane solid oxide fuel cell (SOFC) with Sr2FeNb0.2Mo0.8O6- δ double perovskite as anode material, Journal of Power Sources, 2016. 327: p. 573-579.
  • 60. Shah, M. Y, et al, Semiconductor Nb-Doped SrTiO3- δ Perovskite Electrolyte for a Ceramic Fuel Cell, ACS Applied Energy Materials, 2021. 4(1): p. 365-375.
  • 61. Radenahmad, N., et al, A new high performance proton‐conducting electrolyte for next generation solid oxide fuel cells, Energy Technology, 2020. 8(9): 2000486.
  • 62. Mohammadi, A., et al, All-Perovskite Solid Oxide Fuel Cells, Synthesis and Characterization. (2009).
  • 63. Faro, M. L., and Aricò, A. S,. Electrochemical behaviour of an all-perovskite-based intermediate temperature solid oxide fuel cell, International journal of hydrogen energy, 2013. 38(34): p. 14773-14778.
  • 64 . Ishihara, T., et al, Nickel–Gd-doped CeO2 cermet anode for intermediate temperature operating solid oxide fuel cells using LaGaO3-based perovskite electrolyte, Solid State Ionics, 2000. 132(3-4): p 209-216.
  • 65. Shah, M. Y., et al, Semiconductor Fe-doped SrTiO3- δ perovskite electrolyte for low-temperature solid oxide fuel cell (LT-SOFC) operating below 520 ᵒC, Int J Hydrogen Energy, 2020. 45(28): 1447.
  • 66. Hsu, M. F., et al, Solid oxide fuel cell fabricated using all-perovskite materials, Electrochemical and Solid State Letters, 2006. 9(4): A193.
  • 67. Martínez, J.,et al, Performance of XSCoF (X= Ba, La and Sm) and LSCrX′(X′= Mn, Fe and Al) perovskite-structure materials on LSGM electrolyte for IT-SOFC, Electrochimica acta, 2007. 52(9): p. 2950-2958.
  • 68. Tao, S. W., et al, An efficient solid oxide fuel cell based upon single phase perovskites, Advanced Materials, 2005. 17(14): p. 1734-1737.
  • 69. Serra, J. M., and Meulenberg, W. A thin, Film proton BaZr0.85Y0.15O3 conducting electrolytes: toward an intermediate‐temperature solid oxide fuel cell alternative, Journal of the American Ceramic Society, . 2007. 90(7): p. 2082-2089.
  • 70. Ishihara, T., et al, Intermediate temperature solid oxide electrolysis cell using LaGaO3 based perovskite electrolyte, Energy & Environmental Science, 2010. 3(5): p. 665-672.
  • 71. Glisenti A. et al, Reversible, all-perovskite SOFCs based on La, Sr gallates, Int. Journal of Hydrogen Energy, 2020. 45(2020): 29155e29165.
  • 72. Chuangang Yao et al., Copper doped SrFe 0.9-x Cu x W 0.1 O 3-δ (x = 0–0.3) perovskites as cathode materials for IT-SOFCs, Journal of Alloys and Compounds, 2021. 868: 159127.
  • 73. Shah, M. Y., et al, Advanced fuel cell based on semiconductor perovskite LaeBaZrYO3- δ as an electrolyte material operating at low temperature 550 ᵒC, Int. J. Hydrogen Energy, 2020. p.45, 51.
  • 74. Irshad M., et al,, Electrochemical Investigations of BaCe0.7-x SmxZr0.2Y0.1 O3-δ Sintered at a Low Sintering Temperature as a Perovskite Electrolyte for IT-SOFCs, Sustainability 2021, 13: p. 12595.
  • 75. Kostogloudis, G. C., et al, Chemical compatibility of alternative perovskite oxide SOFC cathodes with doped lanthanum gallate solid electrolyte, Solid State Ionics, 2000. 134(1-2), p. 127-138.
  • 76. Kato, H., et al, Electrical conductivity of Al-doped La1-xSrxScO3 perovskite-type oxides as electrolyte materials for low-temperature SOFC, Solid State Ionics, 2003. 159(3-4), p. 217-222.
There are 76 citations in total.

Details

Primary Language English
Subjects Energy Systems Engineering (Other)
Journal Section Review Articles
Authors

Nagihan Delibaş 0000-0001-5752-062X

Soudabeh Bahrami Gharamaleki 0000-0002-2060-7032

Masrour Mansouri 0000-0002-3277-9894

Aligholi Niaie 0000-0001-5580-4266

Publication Date April 15, 2022
Submission Date July 19, 2021
Acceptance Date March 17, 2022
Published in Issue Year 2022

Cite

APA Delibaş, N., Bahrami Gharamaleki, S., Mansouri, M., Niaie, A. (2022). Reduction of operation temperature in SOFCs utilizing perovskites: Review. International Advanced Researches and Engineering Journal, 6(1), 56-67. https://doi.org/10.35860/iarej.972864
AMA Delibaş N, Bahrami Gharamaleki S, Mansouri M, Niaie A. Reduction of operation temperature in SOFCs utilizing perovskites: Review. Int. Adv. Res. Eng. J. April 2022;6(1):56-67. doi:10.35860/iarej.972864
Chicago Delibaş, Nagihan, Soudabeh Bahrami Gharamaleki, Masrour Mansouri, and Aligholi Niaie. “Reduction of Operation Temperature in SOFCs Utilizing Perovskites: Review”. International Advanced Researches and Engineering Journal 6, no. 1 (April 2022): 56-67. https://doi.org/10.35860/iarej.972864.
EndNote Delibaş N, Bahrami Gharamaleki S, Mansouri M, Niaie A (April 1, 2022) Reduction of operation temperature in SOFCs utilizing perovskites: Review. International Advanced Researches and Engineering Journal 6 1 56–67.
IEEE N. Delibaş, S. Bahrami Gharamaleki, M. Mansouri, and A. Niaie, “Reduction of operation temperature in SOFCs utilizing perovskites: Review”, Int. Adv. Res. Eng. J., vol. 6, no. 1, pp. 56–67, 2022, doi: 10.35860/iarej.972864.
ISNAD Delibaş, Nagihan et al. “Reduction of Operation Temperature in SOFCs Utilizing Perovskites: Review”. International Advanced Researches and Engineering Journal 6/1 (April 2022), 56-67. https://doi.org/10.35860/iarej.972864.
JAMA Delibaş N, Bahrami Gharamaleki S, Mansouri M, Niaie A. Reduction of operation temperature in SOFCs utilizing perovskites: Review. Int. Adv. Res. Eng. J. 2022;6:56–67.
MLA Delibaş, Nagihan et al. “Reduction of Operation Temperature in SOFCs Utilizing Perovskites: Review”. International Advanced Researches and Engineering Journal, vol. 6, no. 1, 2022, pp. 56-67, doi:10.35860/iarej.972864.
Vancouver Delibaş N, Bahrami Gharamaleki S, Mansouri M, Niaie A. Reduction of operation temperature in SOFCs utilizing perovskites: Review. Int. Adv. Res. Eng. J. 2022;6(1):56-67.



Creative Commons License

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.