Research Article
BibTex RIS Cite

Structural analysis of embedded hollow tubes on straight and curved platforms under thermal loads

Year 2021, , 484 - 490, 15.12.2021
https://doi.org/10.35860/iarej.981796

Abstract

Tube systems are widely used in heat transfer and intensive research is being done on positioning tubes on a platform. The platform structure is constantly exposed to thermal changes under operating conditions and the resulting stresses cause damage to existing systems. In this study, 8 thin-walled tubes were positioned on flat and curved platforms that were widely used and the stress behavior under thermal effects was investigated. Finite element analysis was used, and steady-state thermal condition was considered in the numerical investigation. The effects of temperature difference between platform surfaces and the thermal conductivity at the tube surfaces were investigated. It has been determined that the stress on the platform is higher than the stress on the tubes and the increase in the temperature difference on the platform surfaces increases the stress drastically. The increased thermal conductivity coefficient on the tube surface reduced the stresses on the platform and increased fatigue performance. Flat platform has lower contact pressure and platform stresses and better fatigue behavior. Results are discussed in detail.

References

  • 1. Kalogirou, S.A., Solar thermal collectors and applications. Progress in Energy and Combustion Science, 2004. 30: p. 231-295.
  • 2. Alghoul, M.A., Sulaiman, M.Y., B.Z. Azmi, and M.A. Wahab, Review of materials for solar thermal collectors. Anti-Corrosion Methods and Materials, 2005. 52(4): p. 199-206.
  • 3. Visa, I., Duta, A., Comsit, M., Moldovan, M., Ciobanu, D., R. Saulescu, and B. Burduhos, Design and experimental optimisation of a novel flat plate solar thermal collector with trapezoidal shape for facades integration. Applied Thermal Engineering, 2015. 90: p. 432-443.
  • 4. Kalogirou, S.A., A detailed thermal model of a parabolic trough collector receiver. Energy, 2012. 48: p. 298-306.
  • 5. Facao, J., Optimization of flow distribution in flat plate solar thermal collectors with riser and header arrangements. Solar Energy, 2015. 120: p. 104–112.
  • 6. Cadafalch, J., A detailed numerical model for flat-plate solar thermal devices. Solar Energy, 2009. 83: p. 2157–2164.
  • 7. Visa, I., M. Moldovan, and A. Duta, Novel triangle flat plate solar thermal collector for facades integration. Renewable Energy, 2019. 143: p. 252-262.
  • 8. Villar, N.M., Lopez, J.M.C., Munoz, F.D., E.R. Garcia, and A.C. Andres, Numerical 3-D heat flux simulations on flat plate solar collectors. Solar Energy, 2009. 83: p. 1086–1092.
  • 9. Cheng, Z.D., He, Y.L., Cui, F.Q., R.J. Xu, and Y.B. Tao, Numerical simulation of a parabolic trough solar collector with nonuniform solar flux conditions by coupling FVM and MCRT method. Solar Energy, 2012. 86: p. 1770–1784.
  • 10. Colangelo, G., Favale, E., P. Miglietta, and A. Risi, Innovation in flat solar thermal collectors: A review of the last ten years experimental results. Renewable and Sustainable Energy Reviews, 2016. 57: p. 1141–1159.
  • 11. Henshall, P., Eames, P., Arya, F., Hyde, T., R. Moss, and S. Shire, Constant temperature induced stresses in evacuated enclosures for high performance flat plate solar thermal collectors. Solar Energy, 2016. 127: p. 250–261.
  • 12. Mossa, R., Shire, S., Henshall, P., Arya, F., P. Eames, and T. Hyde, Performance of evacuated flat plate solar thermal collectors. Thermal Science and Engineering Progress, 2018. 8: p. 296–306.
  • 13. Wang, F., Shuai, Y., Y. Yuan, and B. Liu, Effects of material selection on the thermal stresses of tube receiver under concentrated solar irradiation. Materials and Design, 2012. 33: p. 284–291.
  • 14. Abedini-Sanigy, M.H., Ahmadi, F., E. Goshtasbirad, and M. Yaghoubi, Thermal stress analysis of absorber tube for a parabolic collector under quasi-steady state condition. Energy Procedia, 2015. 69: p. 3–13.
  • 15. Marugán-Cruz, C., Flores, O., D. Santana, and M. García-Villalba, Heat transfer and thermal stresses in a circular tube with a non-uniform heat flux. International Journal of Heat and Mass Transfer, 2016. 96: p. 256–266.
  • 16. Rodríguez-Sánchez, M.R., Marugán-Cruz, C., A. Acosta-Iborra, and D. Santana, Thermo-mechanical modelling of solar central receivers: effect of incident solar flux resolution. Solar Energy, 2018. 165: p. 43–54.
  • 17. Montoya, A., Rodríguez-Sánchez, M.R., J. López-Puente, and D. Santana, Numerical model of solar external receiver tubes: Influence of mechanical boundary conditions and temperature variation in thermoelastic stresses. Solar Energy, 2018. 174: p. 912–922.
  • 18. Laporte-Azcué, M., González-Gómez, P.A., M.R. Rodríguez-Sánchez, and D. Santana, Deflection and stresses in solar central receivers. Solar Energy, 2020. 195: p. 355–368.
  • 19. Qaisrani, M.A., Wei, J., Fang, J., Jin, Y., Z. Wan, and M. Khalid, Heat losses and thermal stresses of an external cylindrical water/steam solar tower receiver. Applied Thermal Engineering, 2019. 163: 114241.
  • 20. Montoya, A., Rodríguez-Sánchez, M.R., J. López-Puente, and D. Santana, Thermal stress variation in a solar central receiver during daily operation. AIP Conference Proceedings, 2019. 2126: 030038.
  • 21. Pérez-Álvarez, R., Laporte-Azcué, M., A. Acosta-Iborra, and D. Santana, Effect of eccentricity on the thermal stresses in a bayonet tube for solar power tower receivers. AIP Conference Proceedings, 2019. 2126, 030041.
  • 22. Khanna, S., Sharma, V., Newar, S., T.K. Mallick, and P.K. Panigrahi, Thermal stress in bimetallic receiver of solar parabolic trough concentrator induced due to non uniform temperature and solar flux distribution. Solar Energy, 2018. 176: p. 301–311.
  • 23. Tripathy, A.K., Ray, S., S.S. Sahoo, and S. Chakrabarty, Structural analysis of absorber tube used in parabolic trough solar collector and effect of materials on its bending: a computational study. Solar Energy, 2018. 163: p. 471–485.
  • 24. Du, B., He, Y., Z. Zheng, and Z. Cheng, Analysis of thermal stress and fatigue fracture for the solar tower molten salt receiver. Applied Thermal Engineering, 2016. 99: p. 741–750.
  • 25. Wu, S., Luo, J., L. Xiao, and Z. Chen, Effect of different errors on deformation and thermal stress of absorber tube in solar parabolic trough collector. International Journal of Mechanical Sciences, 2020. 188: 105969.
  • 26. Zhou, H., Li, Y., Zuo, Y., Zhou, M., W. Fang, and Y. Zhu, Thermal performance and thermal stress analysis of a 600 MWth solar cylinder external receiver. Renewable Energy, 2021. 164: p. 331-345.
  • 27. Hibbeler, R.C., Mechanics of materials. 2018: 10e, Pearson Education.
  • 28. American Society of Mechanical Engineers, 2010. ASME Boiler and Pressure Vessel Code II, part D: Properties (Metric) Materials. Tech. Rep., ASME, New York, USA.
  • 29. Li, H., Hu, J., Li, J., G. Chen, and X. Sun, Effect of tempering temperature on microstructure and mechanical properties of AISI 6150 steel. J. Cent. South Univ., 2013. 20: p. 866−870.
  • 30. Kodur, V., M. Dwaikat, and R. Fike, High-Temperature properties of steel for fire resistance modeling of structures. Journal of Materials in Civil Engineering, 2010. 22(5): p. 423-434.
  • 31. Chandrupatla, T.R. and A.D. Belegundu,, Introduction to finite elements in engineering. 2012: fourth edition, Pearson Education Limited.
  • 32. Budynas, R.G. and J.K. Nisbett, Shigley’s mechanical engineering design. 2011: ninth edition, McGraw-Hill.
  • 33. Zhang, Z., Qiao, Y., Sun, Q., C. Li, and J. Li, Theoretical estimation to the cyclic strength coefficient and the cyclic strain-hardening exponent for metallic materials: preliminary study. JMEPEG, 2009. 18: 245–254.
  • 34. ASME BPV Code, Section 8, Div 2, Table 5-110.1, 1998.
  • 35. Beer, F.P., Johnston, E.R., J.T. Dewolf, and D.F. Mazurek, Mechanics of materials. 2015: SI 7th Ed., McGraw-Hill Education.
  • 36. Fang, J., Zhang, C., Tu, N., J. Wei, and Z. Wan, Thermal characteristics and thermal stress analysis of a superheated water/steam solar cavity receiver under non-uniform concentrated solar irradiation. Applied Thermal Engineering, 2021. 183: 116234.
Year 2021, , 484 - 490, 15.12.2021
https://doi.org/10.35860/iarej.981796

Abstract

References

  • 1. Kalogirou, S.A., Solar thermal collectors and applications. Progress in Energy and Combustion Science, 2004. 30: p. 231-295.
  • 2. Alghoul, M.A., Sulaiman, M.Y., B.Z. Azmi, and M.A. Wahab, Review of materials for solar thermal collectors. Anti-Corrosion Methods and Materials, 2005. 52(4): p. 199-206.
  • 3. Visa, I., Duta, A., Comsit, M., Moldovan, M., Ciobanu, D., R. Saulescu, and B. Burduhos, Design and experimental optimisation of a novel flat plate solar thermal collector with trapezoidal shape for facades integration. Applied Thermal Engineering, 2015. 90: p. 432-443.
  • 4. Kalogirou, S.A., A detailed thermal model of a parabolic trough collector receiver. Energy, 2012. 48: p. 298-306.
  • 5. Facao, J., Optimization of flow distribution in flat plate solar thermal collectors with riser and header arrangements. Solar Energy, 2015. 120: p. 104–112.
  • 6. Cadafalch, J., A detailed numerical model for flat-plate solar thermal devices. Solar Energy, 2009. 83: p. 2157–2164.
  • 7. Visa, I., M. Moldovan, and A. Duta, Novel triangle flat plate solar thermal collector for facades integration. Renewable Energy, 2019. 143: p. 252-262.
  • 8. Villar, N.M., Lopez, J.M.C., Munoz, F.D., E.R. Garcia, and A.C. Andres, Numerical 3-D heat flux simulations on flat plate solar collectors. Solar Energy, 2009. 83: p. 1086–1092.
  • 9. Cheng, Z.D., He, Y.L., Cui, F.Q., R.J. Xu, and Y.B. Tao, Numerical simulation of a parabolic trough solar collector with nonuniform solar flux conditions by coupling FVM and MCRT method. Solar Energy, 2012. 86: p. 1770–1784.
  • 10. Colangelo, G., Favale, E., P. Miglietta, and A. Risi, Innovation in flat solar thermal collectors: A review of the last ten years experimental results. Renewable and Sustainable Energy Reviews, 2016. 57: p. 1141–1159.
  • 11. Henshall, P., Eames, P., Arya, F., Hyde, T., R. Moss, and S. Shire, Constant temperature induced stresses in evacuated enclosures for high performance flat plate solar thermal collectors. Solar Energy, 2016. 127: p. 250–261.
  • 12. Mossa, R., Shire, S., Henshall, P., Arya, F., P. Eames, and T. Hyde, Performance of evacuated flat plate solar thermal collectors. Thermal Science and Engineering Progress, 2018. 8: p. 296–306.
  • 13. Wang, F., Shuai, Y., Y. Yuan, and B. Liu, Effects of material selection on the thermal stresses of tube receiver under concentrated solar irradiation. Materials and Design, 2012. 33: p. 284–291.
  • 14. Abedini-Sanigy, M.H., Ahmadi, F., E. Goshtasbirad, and M. Yaghoubi, Thermal stress analysis of absorber tube for a parabolic collector under quasi-steady state condition. Energy Procedia, 2015. 69: p. 3–13.
  • 15. Marugán-Cruz, C., Flores, O., D. Santana, and M. García-Villalba, Heat transfer and thermal stresses in a circular tube with a non-uniform heat flux. International Journal of Heat and Mass Transfer, 2016. 96: p. 256–266.
  • 16. Rodríguez-Sánchez, M.R., Marugán-Cruz, C., A. Acosta-Iborra, and D. Santana, Thermo-mechanical modelling of solar central receivers: effect of incident solar flux resolution. Solar Energy, 2018. 165: p. 43–54.
  • 17. Montoya, A., Rodríguez-Sánchez, M.R., J. López-Puente, and D. Santana, Numerical model of solar external receiver tubes: Influence of mechanical boundary conditions and temperature variation in thermoelastic stresses. Solar Energy, 2018. 174: p. 912–922.
  • 18. Laporte-Azcué, M., González-Gómez, P.A., M.R. Rodríguez-Sánchez, and D. Santana, Deflection and stresses in solar central receivers. Solar Energy, 2020. 195: p. 355–368.
  • 19. Qaisrani, M.A., Wei, J., Fang, J., Jin, Y., Z. Wan, and M. Khalid, Heat losses and thermal stresses of an external cylindrical water/steam solar tower receiver. Applied Thermal Engineering, 2019. 163: 114241.
  • 20. Montoya, A., Rodríguez-Sánchez, M.R., J. López-Puente, and D. Santana, Thermal stress variation in a solar central receiver during daily operation. AIP Conference Proceedings, 2019. 2126: 030038.
  • 21. Pérez-Álvarez, R., Laporte-Azcué, M., A. Acosta-Iborra, and D. Santana, Effect of eccentricity on the thermal stresses in a bayonet tube for solar power tower receivers. AIP Conference Proceedings, 2019. 2126, 030041.
  • 22. Khanna, S., Sharma, V., Newar, S., T.K. Mallick, and P.K. Panigrahi, Thermal stress in bimetallic receiver of solar parabolic trough concentrator induced due to non uniform temperature and solar flux distribution. Solar Energy, 2018. 176: p. 301–311.
  • 23. Tripathy, A.K., Ray, S., S.S. Sahoo, and S. Chakrabarty, Structural analysis of absorber tube used in parabolic trough solar collector and effect of materials on its bending: a computational study. Solar Energy, 2018. 163: p. 471–485.
  • 24. Du, B., He, Y., Z. Zheng, and Z. Cheng, Analysis of thermal stress and fatigue fracture for the solar tower molten salt receiver. Applied Thermal Engineering, 2016. 99: p. 741–750.
  • 25. Wu, S., Luo, J., L. Xiao, and Z. Chen, Effect of different errors on deformation and thermal stress of absorber tube in solar parabolic trough collector. International Journal of Mechanical Sciences, 2020. 188: 105969.
  • 26. Zhou, H., Li, Y., Zuo, Y., Zhou, M., W. Fang, and Y. Zhu, Thermal performance and thermal stress analysis of a 600 MWth solar cylinder external receiver. Renewable Energy, 2021. 164: p. 331-345.
  • 27. Hibbeler, R.C., Mechanics of materials. 2018: 10e, Pearson Education.
  • 28. American Society of Mechanical Engineers, 2010. ASME Boiler and Pressure Vessel Code II, part D: Properties (Metric) Materials. Tech. Rep., ASME, New York, USA.
  • 29. Li, H., Hu, J., Li, J., G. Chen, and X. Sun, Effect of tempering temperature on microstructure and mechanical properties of AISI 6150 steel. J. Cent. South Univ., 2013. 20: p. 866−870.
  • 30. Kodur, V., M. Dwaikat, and R. Fike, High-Temperature properties of steel for fire resistance modeling of structures. Journal of Materials in Civil Engineering, 2010. 22(5): p. 423-434.
  • 31. Chandrupatla, T.R. and A.D. Belegundu,, Introduction to finite elements in engineering. 2012: fourth edition, Pearson Education Limited.
  • 32. Budynas, R.G. and J.K. Nisbett, Shigley’s mechanical engineering design. 2011: ninth edition, McGraw-Hill.
  • 33. Zhang, Z., Qiao, Y., Sun, Q., C. Li, and J. Li, Theoretical estimation to the cyclic strength coefficient and the cyclic strain-hardening exponent for metallic materials: preliminary study. JMEPEG, 2009. 18: 245–254.
  • 34. ASME BPV Code, Section 8, Div 2, Table 5-110.1, 1998.
  • 35. Beer, F.P., Johnston, E.R., J.T. Dewolf, and D.F. Mazurek, Mechanics of materials. 2015: SI 7th Ed., McGraw-Hill Education.
  • 36. Fang, J., Zhang, C., Tu, N., J. Wei, and Z. Wan, Thermal characteristics and thermal stress analysis of a superheated water/steam solar cavity receiver under non-uniform concentrated solar irradiation. Applied Thermal Engineering, 2021. 183: 116234.
There are 36 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Articles
Authors

Mustafa Murat Yavuz 0000-0002-5892-0075

Publication Date December 15, 2021
Submission Date August 11, 2021
Acceptance Date December 13, 2021
Published in Issue Year 2021

Cite

APA Yavuz, M. M. (2021). Structural analysis of embedded hollow tubes on straight and curved platforms under thermal loads. International Advanced Researches and Engineering Journal, 5(3), 484-490. https://doi.org/10.35860/iarej.981796
AMA Yavuz MM. Structural analysis of embedded hollow tubes on straight and curved platforms under thermal loads. Int. Adv. Res. Eng. J. December 2021;5(3):484-490. doi:10.35860/iarej.981796
Chicago Yavuz, Mustafa Murat. “Structural Analysis of Embedded Hollow Tubes on Straight and Curved Platforms under Thermal Loads”. International Advanced Researches and Engineering Journal 5, no. 3 (December 2021): 484-90. https://doi.org/10.35860/iarej.981796.
EndNote Yavuz MM (December 1, 2021) Structural analysis of embedded hollow tubes on straight and curved platforms under thermal loads. International Advanced Researches and Engineering Journal 5 3 484–490.
IEEE M. M. Yavuz, “Structural analysis of embedded hollow tubes on straight and curved platforms under thermal loads”, Int. Adv. Res. Eng. J., vol. 5, no. 3, pp. 484–490, 2021, doi: 10.35860/iarej.981796.
ISNAD Yavuz, Mustafa Murat. “Structural Analysis of Embedded Hollow Tubes on Straight and Curved Platforms under Thermal Loads”. International Advanced Researches and Engineering Journal 5/3 (December 2021), 484-490. https://doi.org/10.35860/iarej.981796.
JAMA Yavuz MM. Structural analysis of embedded hollow tubes on straight and curved platforms under thermal loads. Int. Adv. Res. Eng. J. 2021;5:484–490.
MLA Yavuz, Mustafa Murat. “Structural Analysis of Embedded Hollow Tubes on Straight and Curved Platforms under Thermal Loads”. International Advanced Researches and Engineering Journal, vol. 5, no. 3, 2021, pp. 484-90, doi:10.35860/iarej.981796.
Vancouver Yavuz MM. Structural analysis of embedded hollow tubes on straight and curved platforms under thermal loads. Int. Adv. Res. Eng. J. 2021;5(3):484-90.



Creative Commons License

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.