Research Article
BibTex RIS Cite
Year 2018, Volume: 2 Issue: 1, 9 - 13, 15.04.2018

Abstract

References

  • 1. Khan I., K. Saeed, and I. Khan, Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 2017. Article in press. https://doi.org/10.1016/j.arabjc.2017.05.011.
  • 2. Servin A., W. Elmer, A. Mukherjee, R. Torre-Roche, H. Hamdi, J. C. White, and C. Dimkpa, nanoscale micronutrients suppress disease. VFRC Report 2015/2, Washington, D.C., USA.
  • 3. Siddiqi K. S. and A. Husen, Plant response to engineered metal oxide nanoparticles. Nanoscale Research Letters, 2017. 12(92): p.1-18.
  • 4. Narendhran S., P. Rajiv, and R. Sivaraj, influence of zinc oxide nanoparticles on growth of sesamum indicum L. In Zinc Deficient Soil. International Journal of Pharmacy and Pharmaceutical Sciences, 2016. 8(3):p.365-371.
  • 5. Savithramma N., S. Ankanna and G. Bhumi, Effect of nanoparticles on seed germination and seedling growth of boswellia ovalifoliolata – an endemic and endangered medicinal tree taxon. Nano Vision, 2012. 2(1,2&3): p.61-68.
  • 6. Thul S.T. and B.K. Sarangi, Implications of nanotechnology on plant productivity and its rhizospheric environment. In: Siddiqui M. H. et al (eds) Nanotechnology and plant sciences. Springer, Cham 2015. p 37–53.
  • 7. Cai F., X. Wu, H. Zhang, X. Shen, M. Zhang, W. Chen, Q. Gao, J.C. White, S. Tao, and X. Wang, Impact of TiO2 nanoparticles on lead uptake and bioaccumulation in rice (Oryza sativa L.). NanoImpact, 2017. 5: p. 101–108.
  • 8. Doğaroğlu Z.G. and N. Köleli, TiO2 and ZnO nanoparticles toxicity in barley (Hordeum vulgare L.). Clean – Soil, Air, Water, 2017. 45: p. 1-7.
  • 9. Tolaymat T., A. Genaidy, W. Abdelraheem, D. Dionysiou, and C. Andersen, The effects of metallic engineered nanoparticles upon plant systems: An analytic examination of scientific evidence. Science of the Total Environment, 2017. 579: p.93–106.
  • 10. Durán N., P.D. Marcato, R. Conti, O. L. Alves, F. T. M. Costa, and M. Brocchi, Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. J. Braz. Chem. Soc., 2010. 21(6): p. 949-959.
  • 11. Doğaroğlu, Z.G. and N. Köleli, Titanyum Dioksit ve Titanyum Dioksit-Gümüş Nanopartiküllerinin Marul (Lactuca sativa) Tohumunun Çimlenmesine Etkisi. Çukurova University Journal of the Faculty of Engineering and Architecture, 2016. 31: p.193-198.
  • 12. Jain N., A. Bhargava, V. Pareek, M. S. Akhtar, and J. Panwar, Does seed size and surface anatomy play role in combating phytotoxicity of nanoparticles?. Ecotoxicology, 2017. 26: p.238–249.
  • 13. Miralles, P., T.L. Church, and A.T. Harris, Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environ. Sci. Technol., 2012. 46 (17): p.9224-9239.
  • 14. Mahmoodzadeh H., M. Nabavi, and H. Kashefi, Effect of nanoscale titanium dioxide particles on the germination and growth of canola (Brassica napus). J Ornamental Hortic Plants, 2013. 3: p. 25–32.
  • 15. Afrakhteh, S., E. Frahmandfar, A. Hamidi, H.D. Ramandi, Evaluation of growth characteristics and seedling vigor in two cultivars of soybean dried under different temperature and fluidized bed dryer. International Journal of Agriculture and Crop Sciences, 2013. 5(21): p.2537-2544.
  • 16. Prasad T.N.V.K.V., P. Sudhakar, Y. Sreenivasulu, P. Latha, V. Munaswamy, K.R. Reddy, T.S. Sreeprasad, P.R. Sajanlal, and T. Pradeep, Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. Journal of Plant Nutrition, 2012. 35(6): p. 905-927.
  • 17. Khot L.R., S. Sankaran, J.M. Maja, R. Ehsani, and E.W. Schuster, Applications of nanomaterials in agricultural production and crop protection: A review. Crop Protection, 2012. 35: p.64-70.
  • 18. El-Temsah Y.S., and E.J. Joner, Impact of Fe and Ag nanoparticles on seedgermination and differences in bioavailability during exposure in aqueoussuspension and soil. Environ. Toxicol., 2012. 27: p. 42–49.
  • 19. Xiang L., H.-M. Zhao, Y.-W. Li, X.-P. Huang, X.-L. Wu, T. Zhai, Y. Yuan, Q.-Y. Cai, and C.-H. Mo, Effects of the size and morphology of zinc oxide nanoparticles on the germination of Chinese cabbage seed. Environmental Science and Pollution Research, 2015. 22(14): p. 10452–10462.
  • 20. Rizwan M., S. Ali, M.F. Qayyum, Y.S. Ok, M. Adrees, M. Ibrahim, M. Zia-ur-Rehmand, M. Faride, and F. Abbas, Effect of metal and metal oxide nanoparticles on growth andphysiology of globally important food crops: A critical revie. Journal of Hazardous Materials, 2017. 322: p. 2–16.
  • 21. Yoon S.J., J.I. Kwak, W.M. Lee, P.A. Holden, and Y.J. An, Zinc oxide nanoparticlesdelay soybean development: a standard soil microcosm study. Ecotoxicol. Environ. Saf., 2014. 100: p.131–137.
  • 22. Ghosh M., M. Bandyopadhyay, and A. Mukherjee, Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels:plant and human lymphocytes. Chemosphere, 2010. 81: p. 1253–1262.

Co-application of EDDS and ZnO nanoparticles with TiO2Ag nanoparticles on rye

Year 2018, Volume: 2 Issue: 1, 9 - 13, 15.04.2018

Abstract

The aim of this study was to
determine the effects of nTiO2Ag, co-application of nZnO and nTiO2Ag
and co-application of EDDS as an organic acid with nTiO2Ag on seed
germination, seedling vigor, plumule and radicle length of rye. Ten seeds were
placed in petri-dishes with double layer of filter paper which used as an inert
material. Then 5 mL nTiO2Ag, nZnO-nTiO2Ag and EDDS-nTiO2Ag
suspensions were added to every petri dish with different concentrations
(control, 50, 100 and 200 mg/L). Treatment of nZnO-nTiO2Ag,
especially at concentration of 50 mg/L, promoted the germination rate, seedling
vigor, plumule and radicle elongation. The highest seedling vigor index (SVI)
was observed at concentration of 50 mg/L nZnO-nTiO2Ag. Seedling
vigor index of rye seeds was decreased after treatment of nTiO2Ag.
The plumule elongation increased with treatment of all test chemicals and
radicle elongation was increased nZnO-nTiO2Ag and EDDS-nTiO2Ag
exposure compared to control. This is the first report on the effect of co-application
of ZnO-TiO2Ag nanoparticles and co-application of EDDS-TiO2Ag
nanoparticles on rye growth.

References

  • 1. Khan I., K. Saeed, and I. Khan, Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 2017. Article in press. https://doi.org/10.1016/j.arabjc.2017.05.011.
  • 2. Servin A., W. Elmer, A. Mukherjee, R. Torre-Roche, H. Hamdi, J. C. White, and C. Dimkpa, nanoscale micronutrients suppress disease. VFRC Report 2015/2, Washington, D.C., USA.
  • 3. Siddiqi K. S. and A. Husen, Plant response to engineered metal oxide nanoparticles. Nanoscale Research Letters, 2017. 12(92): p.1-18.
  • 4. Narendhran S., P. Rajiv, and R. Sivaraj, influence of zinc oxide nanoparticles on growth of sesamum indicum L. In Zinc Deficient Soil. International Journal of Pharmacy and Pharmaceutical Sciences, 2016. 8(3):p.365-371.
  • 5. Savithramma N., S. Ankanna and G. Bhumi, Effect of nanoparticles on seed germination and seedling growth of boswellia ovalifoliolata – an endemic and endangered medicinal tree taxon. Nano Vision, 2012. 2(1,2&3): p.61-68.
  • 6. Thul S.T. and B.K. Sarangi, Implications of nanotechnology on plant productivity and its rhizospheric environment. In: Siddiqui M. H. et al (eds) Nanotechnology and plant sciences. Springer, Cham 2015. p 37–53.
  • 7. Cai F., X. Wu, H. Zhang, X. Shen, M. Zhang, W. Chen, Q. Gao, J.C. White, S. Tao, and X. Wang, Impact of TiO2 nanoparticles on lead uptake and bioaccumulation in rice (Oryza sativa L.). NanoImpact, 2017. 5: p. 101–108.
  • 8. Doğaroğlu Z.G. and N. Köleli, TiO2 and ZnO nanoparticles toxicity in barley (Hordeum vulgare L.). Clean – Soil, Air, Water, 2017. 45: p. 1-7.
  • 9. Tolaymat T., A. Genaidy, W. Abdelraheem, D. Dionysiou, and C. Andersen, The effects of metallic engineered nanoparticles upon plant systems: An analytic examination of scientific evidence. Science of the Total Environment, 2017. 579: p.93–106.
  • 10. Durán N., P.D. Marcato, R. Conti, O. L. Alves, F. T. M. Costa, and M. Brocchi, Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. J. Braz. Chem. Soc., 2010. 21(6): p. 949-959.
  • 11. Doğaroğlu, Z.G. and N. Köleli, Titanyum Dioksit ve Titanyum Dioksit-Gümüş Nanopartiküllerinin Marul (Lactuca sativa) Tohumunun Çimlenmesine Etkisi. Çukurova University Journal of the Faculty of Engineering and Architecture, 2016. 31: p.193-198.
  • 12. Jain N., A. Bhargava, V. Pareek, M. S. Akhtar, and J. Panwar, Does seed size and surface anatomy play role in combating phytotoxicity of nanoparticles?. Ecotoxicology, 2017. 26: p.238–249.
  • 13. Miralles, P., T.L. Church, and A.T. Harris, Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environ. Sci. Technol., 2012. 46 (17): p.9224-9239.
  • 14. Mahmoodzadeh H., M. Nabavi, and H. Kashefi, Effect of nanoscale titanium dioxide particles on the germination and growth of canola (Brassica napus). J Ornamental Hortic Plants, 2013. 3: p. 25–32.
  • 15. Afrakhteh, S., E. Frahmandfar, A. Hamidi, H.D. Ramandi, Evaluation of growth characteristics and seedling vigor in two cultivars of soybean dried under different temperature and fluidized bed dryer. International Journal of Agriculture and Crop Sciences, 2013. 5(21): p.2537-2544.
  • 16. Prasad T.N.V.K.V., P. Sudhakar, Y. Sreenivasulu, P. Latha, V. Munaswamy, K.R. Reddy, T.S. Sreeprasad, P.R. Sajanlal, and T. Pradeep, Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. Journal of Plant Nutrition, 2012. 35(6): p. 905-927.
  • 17. Khot L.R., S. Sankaran, J.M. Maja, R. Ehsani, and E.W. Schuster, Applications of nanomaterials in agricultural production and crop protection: A review. Crop Protection, 2012. 35: p.64-70.
  • 18. El-Temsah Y.S., and E.J. Joner, Impact of Fe and Ag nanoparticles on seedgermination and differences in bioavailability during exposure in aqueoussuspension and soil. Environ. Toxicol., 2012. 27: p. 42–49.
  • 19. Xiang L., H.-M. Zhao, Y.-W. Li, X.-P. Huang, X.-L. Wu, T. Zhai, Y. Yuan, Q.-Y. Cai, and C.-H. Mo, Effects of the size and morphology of zinc oxide nanoparticles on the germination of Chinese cabbage seed. Environmental Science and Pollution Research, 2015. 22(14): p. 10452–10462.
  • 20. Rizwan M., S. Ali, M.F. Qayyum, Y.S. Ok, M. Adrees, M. Ibrahim, M. Zia-ur-Rehmand, M. Faride, and F. Abbas, Effect of metal and metal oxide nanoparticles on growth andphysiology of globally important food crops: A critical revie. Journal of Hazardous Materials, 2017. 322: p. 2–16.
  • 21. Yoon S.J., J.I. Kwak, W.M. Lee, P.A. Holden, and Y.J. An, Zinc oxide nanoparticlesdelay soybean development: a standard soil microcosm study. Ecotoxicol. Environ. Saf., 2014. 100: p.131–137.
  • 22. Ghosh M., M. Bandyopadhyay, and A. Mukherjee, Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels:plant and human lymphocytes. Chemosphere, 2010. 81: p. 1253–1262.
There are 22 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Zeynep Görkem Doğaroğlu

Nurcan Köleli This is me

Publication Date April 15, 2018
Submission Date March 5, 2018
Acceptance Date March 20, 2018
Published in Issue Year 2018 Volume: 2 Issue: 1

Cite

APA Doğaroğlu, Z. G., & Köleli, N. (2018). Co-application of EDDS and ZnO nanoparticles with TiO2Ag nanoparticles on rye. International Advanced Researches and Engineering Journal, 2(1), 9-13.
AMA Doğaroğlu ZG, Köleli N. Co-application of EDDS and ZnO nanoparticles with TiO2Ag nanoparticles on rye. Int. Adv. Res. Eng. J. April 2018;2(1):9-13.
Chicago Doğaroğlu, Zeynep Görkem, and Nurcan Köleli. “Co-Application of EDDS and ZnO Nanoparticles With TiO2Ag Nanoparticles on Rye”. International Advanced Researches and Engineering Journal 2, no. 1 (April 2018): 9-13.
EndNote Doğaroğlu ZG, Köleli N (April 1, 2018) Co-application of EDDS and ZnO nanoparticles with TiO2Ag nanoparticles on rye. International Advanced Researches and Engineering Journal 2 1 9–13.
IEEE Z. G. Doğaroğlu and N. Köleli, “Co-application of EDDS and ZnO nanoparticles with TiO2Ag nanoparticles on rye”, Int. Adv. Res. Eng. J., vol. 2, no. 1, pp. 9–13, 2018.
ISNAD Doğaroğlu, Zeynep Görkem - Köleli, Nurcan. “Co-Application of EDDS and ZnO Nanoparticles With TiO2Ag Nanoparticles on Rye”. International Advanced Researches and Engineering Journal 2/1 (April 2018), 9-13.
JAMA Doğaroğlu ZG, Köleli N. Co-application of EDDS and ZnO nanoparticles with TiO2Ag nanoparticles on rye. Int. Adv. Res. Eng. J. 2018;2:9–13.
MLA Doğaroğlu, Zeynep Görkem and Nurcan Köleli. “Co-Application of EDDS and ZnO Nanoparticles With TiO2Ag Nanoparticles on Rye”. International Advanced Researches and Engineering Journal, vol. 2, no. 1, 2018, pp. 9-13.
Vancouver Doğaroğlu ZG, Köleli N. Co-application of EDDS and ZnO nanoparticles with TiO2Ag nanoparticles on rye. Int. Adv. Res. Eng. J. 2018;2(1):9-13.



Creative Commons License

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.