Research Article
BibTex RIS Cite
Year 2018, Volume: 2 Issue: 1, 20 - 26, 15.04.2018

Abstract

References

  • 1. Jani J.M., Leary M., Subic A., Gibson M.A., A review of shape memory alloy research, applications and opportunities. Materials and Design, 2014. 56: p. 1078–1113.
  • 2. Capek J., Vojtech D., Novak P., Preparation Of The NiTi Alloy By A Powder Metallurgy Technique. Metal 2012. Brno, Czech Republic. 3. Petrini L., MigliavaccaF., Biomedical applications of shape memory alloys. J. Metall, 2011.
  • 4. Song C., History and current situation of shape memory alloys devices for minimally invasive surgery. Open Med Dev J., 2010. 2: p.24–31.
  • 5. Morgan N.B., Medical shape memory alloy applications – the market and its products. Mater Sci Eng., A., 2004. 378: p.16–23.
  • 6. Machado L.G., Savi M.A., Medical applications of shape memory alloys. Braz J Med Biol Res., 2003. 36: p. 683–91.
  • 7. Duerig T, Pelton A, Stöckel D., An overview of nitinol medical applications. Mater SciEng, A., 1999. 273–275: p. 149–60.
  • 8. Bram M., Ahmad-KhanlouA.,Heckmann A., Fuchs B., Buchkremer H.P., Stöver D., Powder Metallurgical Fabrication Processes For NiTi Shape Memory Alloy Parts. Material Science and Engineering: A, 2002. Volume 337, Issues 1-2, p. 254-263.
  • 9. B. Thierry, M. Tabrizian, C. Trepanier, O. Savadogo, L.H. Yahia, Effect of surface treatment and sterilization processes on the corrosion behavior NiTi shape memory alloy. Journal of biomedical materials research, 2000. 51: p. 685-693.
  • 10. Mentz J., Frenzel J., Martin F.- Wagner X., Neuking K., Eggeler G., Buchkremer H.P., Stöver D., Powder Metallurgical Processing of NiTi Shape Memory Alloys With Elevated Transformation Temperatures, Material Science and Engineering: A, 2008. Volume 491, Issues 1-2, p. 270-278.
  • 11. Krone L., Shuller E., Bram E., Hamed O., Buchkremer H.P., Stöver D., Mechanical Behaviour Of NiTi Parts Prepared By Powder Metallurgical Methods. Material Science and Engineering: A, 2004. Volume 378, Issues1-2, p. 185-190.
  • 12. Gökmeşe, H., Bostan, B., Microstructural characterization and synthesis by mechanochemical method of nanoparticle Al2O3/B4C ceramic phase, Journal of the Faculty of Engineering and Architecture of Gazi University, 2014. 29:2, p. 289-297.
  • 13. Xu J.L., Jin X.F., Luo J.M., Zhong Z.C., Fabrication and properties of porous NiTi alloys by microwave sintering for biomedical applications. Materials Letters, 2014. 124: p.110–112.
  • 14. Gökmeşe, H., Bostan, B., AA 2014 Alaşımında Presleme ve Sinterlemenin Gözenek Morfolojisi ve Mikroyapısal Özelliklere Etkileri, Gazi Üniversitesi Fen Bilimleri Dergisi Part C: TasarımveTeknoloji. 2013. 1(1): p. 1-8.
  • 15. Yıldız, S., Köroğlu, M., Gökmeşe, H., Bostan, B., Al-%4.5Cu ve AA 2014 Toz Metal Parçalarının Sinterleme Tavrı ve Mekanik Özelliklerinin İncelenmesi. 7. Uluslararası Toz Metalurjisi Konferansı ve Sergisi, 2014. p. 225-226.
  • 16. Nishida M., Hara T., Ohba T., Yamaguchi K., Tanaka K., and Yamauchi K., Experimental Consideration of Multistage Martensitic Transformation and Precipitation Behavior in Aged Ni-Rich Ti-Ni Shape Memory Alloys. Materials Transactions, 2003. 44: 12 p. 2631-2636.
  • 17. Aydoğmuş T., Bor A.Ş., Production and characterization of porous TiNi shape memory alloys. Turkish J. Eng. Env. Sci. 2011. 35: p. 69 – 82.
  • 18. Lagoudas D.C., Shape Memory Alloys-Modelling and Engineering Applicatio. Springer Science + Business Media LLC, Department of Aerospace Engineering, Texas A&M University, College Station, USA, 2008. p. 2-6, 23-41, 281.
  • 19. German R.M., Editörler; Sarıtaş S., Türker M., Durlu N., “Toz metalurjisi ve parçacikli malzeme işlemleri. Bölüm 8, Sinterleme Kavramları, 2007. p.258, Uyum Ajans, Ankara.
  • 20. Whitney M., Corbin S.F., Gorbet R.B., Investigation of the mechanisms of reactive sintering and combustion synthesis of NiTi using differential scanning calorimetry and microstructural analysis. Acta Materialia, 2008. 56: p. 559–570.
  • 21. Chen G., Liss K.-D., Cao P., In situ observation and neutron diffraction of NiTi powder sintering. Acta Materialia, 2014. 67: p. 32–44.
  • 22. Metals Handbook, Alloy Phase Diagrams. 1994. 9th ed., vol. 3. ASM.
  • 23. Li Bing-yun, Li-Jian, Yi-Yi, Porous NiTi Alloy prepared from Elemental Powder Sintering. Chinese Academy of Science, 1998. Vol.13, No.10, p. 2847-2851..
  • 24. Al-SaffarS.M., Al-Hassani E.S., Hussein R.A., “Characterization of Niti Super Elasticity ShapeMemory Alloys”, Eng. &Tech. Journal, Vol. 31, Part (A), No.16, (2013).
  • 25. Bram M., Ahmad-Khanlou A., Heckmann A. , Fuchs a B., Buchkremer H.P., Stöver D., Powder metallurgical fabrication processes for NiTi shape memory alloy parts. Materials Science and Engineering A, 2002. 337 : p. 254 – 263.
  • 26. Corbin S.F., Cluff D., Journal of Alloys and Compounds. 2009. 487: p.179-86.
  • 27. Cluff D., Corbin S.F., The influence of Ni powder size, compact composition and sintering profile on the shape memory transformation and tensile behaviour of NiTi. Intermetallics, 2010. 18: p. 1480-1490.
  • 28. Zhang N., Khosrovabadi P.B., Lindenhovius J.H., Kolster B.H., Mater. Sci. Eng: A, 1992. p. 150:263.
  • 29. Bertheville B, Neudenberger M., Bidaux J.E., Mater. Sci. Eng. A, 2004. p. 384:143.
  • 30. Bertheville B., Bidaux J.E., J. Alloys Compd., 2005. 387: p. 211–216.
  • 31. Corbin S.F., Cluff D., Determining the rate of (-Ti) decay and its influence on the sintering behavior of NiTi. Journal of Alloys and Compounds, 2009. 487: p. 179–186.
  • 32. Ismail M.H., Goodall R., Davies H.A., Todd I., Porous NiTi alloy by metal injection moulding/sintering of elemental powders: Effect of sintering temperature. Materials Letters, 2012. 70: p:142–145.
  • 33. Verdian M.M., Raeissi K., Salehi M., Sabooni S., Characterization and corrosion behavior of NiTi-Ti2Ni-Ni3Ti multiphase intermetallics produced by vacuum sintering. Vacuum, 2011. 86 : p. 91-95.
  • 34. Goryczka T., Van Humbeeck J., Characterization of a NiTiCu shape memory alloy produced by powder technology. 2006. Volume: 17, issue: 1-2,
  • 35. Rani S., Awan M.S., Qureshi I.N., Yasmin F. and Farooque M., Effect of Cu on Structural and FF-Behavior of NiTi Shape Memory Alloy. Key Engineering Materials, 2010. Vol. 442: p. 301-308.
  • 36. Nam T.H., Saburi T., Nakata Y. and ShimizuK., Shape memory characteristic and lattice deformation In Ti-Ni-Cu alloys. Materials Transactions JIM, 1990. 31: p.1050-1056.
  • 37. Fukuda F., Kakeshita T., Kitayama M. and Saburi K., Effect of ageing on martensitic transformation in a shape memory Ti40.5Ni10Cu alloy. Journal de Physique IV5, 1995. p. C8-717.

Effect of Cu addition on microstructure and mechanical properties of NiTi based shape memory alloy

Year 2018, Volume: 2 Issue: 1, 20 - 26, 15.04.2018

Abstract



In this research paper,
pre-alloyed NiTi based shape memory alloy and 4%Cu were used as starting powder
materials. Starting powder materials were blended for 60 minutes by a turbula
mixer. After mix processing, microstructure and phase transformations of
powders were characterized using X-ray (XRD), elemental distribution
spectrometry (EDS), scanning electron microscopy (SEM). Prepared powder
mixtures as NiTi and NiTi+4%Cu alloys were pressed at 785MPa in a mold and then
sintering process was applied to materials at different temperatures and time.
Formation of multiphase’s (Ni3Ti, NiTi, Ti2Ni, Ni4Ti3
and NiTiCu) and positive effects of Cu addition were obtained by
sintering at different temperatures and time. And also, stabilized NiTi phase
and increasing the value of micro hardness were determined with added 4%Cu
powders.

References

  • 1. Jani J.M., Leary M., Subic A., Gibson M.A., A review of shape memory alloy research, applications and opportunities. Materials and Design, 2014. 56: p. 1078–1113.
  • 2. Capek J., Vojtech D., Novak P., Preparation Of The NiTi Alloy By A Powder Metallurgy Technique. Metal 2012. Brno, Czech Republic. 3. Petrini L., MigliavaccaF., Biomedical applications of shape memory alloys. J. Metall, 2011.
  • 4. Song C., History and current situation of shape memory alloys devices for minimally invasive surgery. Open Med Dev J., 2010. 2: p.24–31.
  • 5. Morgan N.B., Medical shape memory alloy applications – the market and its products. Mater Sci Eng., A., 2004. 378: p.16–23.
  • 6. Machado L.G., Savi M.A., Medical applications of shape memory alloys. Braz J Med Biol Res., 2003. 36: p. 683–91.
  • 7. Duerig T, Pelton A, Stöckel D., An overview of nitinol medical applications. Mater SciEng, A., 1999. 273–275: p. 149–60.
  • 8. Bram M., Ahmad-KhanlouA.,Heckmann A., Fuchs B., Buchkremer H.P., Stöver D., Powder Metallurgical Fabrication Processes For NiTi Shape Memory Alloy Parts. Material Science and Engineering: A, 2002. Volume 337, Issues 1-2, p. 254-263.
  • 9. B. Thierry, M. Tabrizian, C. Trepanier, O. Savadogo, L.H. Yahia, Effect of surface treatment and sterilization processes on the corrosion behavior NiTi shape memory alloy. Journal of biomedical materials research, 2000. 51: p. 685-693.
  • 10. Mentz J., Frenzel J., Martin F.- Wagner X., Neuking K., Eggeler G., Buchkremer H.P., Stöver D., Powder Metallurgical Processing of NiTi Shape Memory Alloys With Elevated Transformation Temperatures, Material Science and Engineering: A, 2008. Volume 491, Issues 1-2, p. 270-278.
  • 11. Krone L., Shuller E., Bram E., Hamed O., Buchkremer H.P., Stöver D., Mechanical Behaviour Of NiTi Parts Prepared By Powder Metallurgical Methods. Material Science and Engineering: A, 2004. Volume 378, Issues1-2, p. 185-190.
  • 12. Gökmeşe, H., Bostan, B., Microstructural characterization and synthesis by mechanochemical method of nanoparticle Al2O3/B4C ceramic phase, Journal of the Faculty of Engineering and Architecture of Gazi University, 2014. 29:2, p. 289-297.
  • 13. Xu J.L., Jin X.F., Luo J.M., Zhong Z.C., Fabrication and properties of porous NiTi alloys by microwave sintering for biomedical applications. Materials Letters, 2014. 124: p.110–112.
  • 14. Gökmeşe, H., Bostan, B., AA 2014 Alaşımında Presleme ve Sinterlemenin Gözenek Morfolojisi ve Mikroyapısal Özelliklere Etkileri, Gazi Üniversitesi Fen Bilimleri Dergisi Part C: TasarımveTeknoloji. 2013. 1(1): p. 1-8.
  • 15. Yıldız, S., Köroğlu, M., Gökmeşe, H., Bostan, B., Al-%4.5Cu ve AA 2014 Toz Metal Parçalarının Sinterleme Tavrı ve Mekanik Özelliklerinin İncelenmesi. 7. Uluslararası Toz Metalurjisi Konferansı ve Sergisi, 2014. p. 225-226.
  • 16. Nishida M., Hara T., Ohba T., Yamaguchi K., Tanaka K., and Yamauchi K., Experimental Consideration of Multistage Martensitic Transformation and Precipitation Behavior in Aged Ni-Rich Ti-Ni Shape Memory Alloys. Materials Transactions, 2003. 44: 12 p. 2631-2636.
  • 17. Aydoğmuş T., Bor A.Ş., Production and characterization of porous TiNi shape memory alloys. Turkish J. Eng. Env. Sci. 2011. 35: p. 69 – 82.
  • 18. Lagoudas D.C., Shape Memory Alloys-Modelling and Engineering Applicatio. Springer Science + Business Media LLC, Department of Aerospace Engineering, Texas A&M University, College Station, USA, 2008. p. 2-6, 23-41, 281.
  • 19. German R.M., Editörler; Sarıtaş S., Türker M., Durlu N., “Toz metalurjisi ve parçacikli malzeme işlemleri. Bölüm 8, Sinterleme Kavramları, 2007. p.258, Uyum Ajans, Ankara.
  • 20. Whitney M., Corbin S.F., Gorbet R.B., Investigation of the mechanisms of reactive sintering and combustion synthesis of NiTi using differential scanning calorimetry and microstructural analysis. Acta Materialia, 2008. 56: p. 559–570.
  • 21. Chen G., Liss K.-D., Cao P., In situ observation and neutron diffraction of NiTi powder sintering. Acta Materialia, 2014. 67: p. 32–44.
  • 22. Metals Handbook, Alloy Phase Diagrams. 1994. 9th ed., vol. 3. ASM.
  • 23. Li Bing-yun, Li-Jian, Yi-Yi, Porous NiTi Alloy prepared from Elemental Powder Sintering. Chinese Academy of Science, 1998. Vol.13, No.10, p. 2847-2851..
  • 24. Al-SaffarS.M., Al-Hassani E.S., Hussein R.A., “Characterization of Niti Super Elasticity ShapeMemory Alloys”, Eng. &Tech. Journal, Vol. 31, Part (A), No.16, (2013).
  • 25. Bram M., Ahmad-Khanlou A., Heckmann A. , Fuchs a B., Buchkremer H.P., Stöver D., Powder metallurgical fabrication processes for NiTi shape memory alloy parts. Materials Science and Engineering A, 2002. 337 : p. 254 – 263.
  • 26. Corbin S.F., Cluff D., Journal of Alloys and Compounds. 2009. 487: p.179-86.
  • 27. Cluff D., Corbin S.F., The influence of Ni powder size, compact composition and sintering profile on the shape memory transformation and tensile behaviour of NiTi. Intermetallics, 2010. 18: p. 1480-1490.
  • 28. Zhang N., Khosrovabadi P.B., Lindenhovius J.H., Kolster B.H., Mater. Sci. Eng: A, 1992. p. 150:263.
  • 29. Bertheville B, Neudenberger M., Bidaux J.E., Mater. Sci. Eng. A, 2004. p. 384:143.
  • 30. Bertheville B., Bidaux J.E., J. Alloys Compd., 2005. 387: p. 211–216.
  • 31. Corbin S.F., Cluff D., Determining the rate of (-Ti) decay and its influence on the sintering behavior of NiTi. Journal of Alloys and Compounds, 2009. 487: p. 179–186.
  • 32. Ismail M.H., Goodall R., Davies H.A., Todd I., Porous NiTi alloy by metal injection moulding/sintering of elemental powders: Effect of sintering temperature. Materials Letters, 2012. 70: p:142–145.
  • 33. Verdian M.M., Raeissi K., Salehi M., Sabooni S., Characterization and corrosion behavior of NiTi-Ti2Ni-Ni3Ti multiphase intermetallics produced by vacuum sintering. Vacuum, 2011. 86 : p. 91-95.
  • 34. Goryczka T., Van Humbeeck J., Characterization of a NiTiCu shape memory alloy produced by powder technology. 2006. Volume: 17, issue: 1-2,
  • 35. Rani S., Awan M.S., Qureshi I.N., Yasmin F. and Farooque M., Effect of Cu on Structural and FF-Behavior of NiTi Shape Memory Alloy. Key Engineering Materials, 2010. Vol. 442: p. 301-308.
  • 36. Nam T.H., Saburi T., Nakata Y. and ShimizuK., Shape memory characteristic and lattice deformation In Ti-Ni-Cu alloys. Materials Transactions JIM, 1990. 31: p.1050-1056.
  • 37. Fukuda F., Kakeshita T., Kitayama M. and Saburi K., Effect of ageing on martensitic transformation in a shape memory Ti40.5Ni10Cu alloy. Journal de Physique IV5, 1995. p. C8-717.
There are 36 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Hakan Gökmeşe

Naci Arda Tanış This is me

Bülent Bostan

Publication Date April 15, 2018
Submission Date March 25, 2018
Acceptance Date April 9, 2018
Published in Issue Year 2018 Volume: 2 Issue: 1

Cite

APA Gökmeşe, H., Tanış, N. A., & Bostan, B. (2018). Effect of Cu addition on microstructure and mechanical properties of NiTi based shape memory alloy. International Advanced Researches and Engineering Journal, 2(1), 20-26.
AMA Gökmeşe H, Tanış NA, Bostan B. Effect of Cu addition on microstructure and mechanical properties of NiTi based shape memory alloy. Int. Adv. Res. Eng. J. April 2018;2(1):20-26.
Chicago Gökmeşe, Hakan, Naci Arda Tanış, and Bülent Bostan. “Effect of Cu Addition on Microstructure and Mechanical Properties of NiTi Based Shape Memory Alloy”. International Advanced Researches and Engineering Journal 2, no. 1 (April 2018): 20-26.
EndNote Gökmeşe H, Tanış NA, Bostan B (April 1, 2018) Effect of Cu addition on microstructure and mechanical properties of NiTi based shape memory alloy. International Advanced Researches and Engineering Journal 2 1 20–26.
IEEE H. Gökmeşe, N. A. Tanış, and B. Bostan, “Effect of Cu addition on microstructure and mechanical properties of NiTi based shape memory alloy”, Int. Adv. Res. Eng. J., vol. 2, no. 1, pp. 20–26, 2018.
ISNAD Gökmeşe, Hakan et al. “Effect of Cu Addition on Microstructure and Mechanical Properties of NiTi Based Shape Memory Alloy”. International Advanced Researches and Engineering Journal 2/1 (April 2018), 20-26.
JAMA Gökmeşe H, Tanış NA, Bostan B. Effect of Cu addition on microstructure and mechanical properties of NiTi based shape memory alloy. Int. Adv. Res. Eng. J. 2018;2:20–26.
MLA Gökmeşe, Hakan et al. “Effect of Cu Addition on Microstructure and Mechanical Properties of NiTi Based Shape Memory Alloy”. International Advanced Researches and Engineering Journal, vol. 2, no. 1, 2018, pp. 20-26.
Vancouver Gökmeşe H, Tanış NA, Bostan B. Effect of Cu addition on microstructure and mechanical properties of NiTi based shape memory alloy. Int. Adv. Res. Eng. J. 2018;2(1):20-6.



Creative Commons License

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.