Research Article
BibTex RIS Cite

Selection of optimal numerical method for implementation of Lorenz Chaotic system on FPGA

Year 2018, Volume: 2 Issue: 2, 147 - 152, 15.08.2018

Abstract

In this study, implementation of
Lorenz chaotic system on Spartan 3e XC3S1600e FPGA development board by using
Xilinx System Generator technology is presented. Differential equations of any
nonlinear system have to be discretized before coding and design process on
FPGA editor. The Lorenz chaotic system is discretized by using Taylor series
expansion, Runge-Kutta and Euler discretization methods which are mostly
preferred to discretize the continuous formed signals. The optimal numerical
method based on application area is proposed by proving accuracy and complexity
of methods and comparing designs in terms of resource utilizations on FPGA
board.

References

  • 1. Zirkohi, M.M., Model reference type-2 fuzzy sliding mode control for a novel uncertain hyperchaotic system, Journal of Intelligent & Fuzzy Systems, 32 (1); 389-400, 2017.
  • 2. Jia, N., Wang, T., Chaos control and hybrid projective synchronization for a class of new chaotic systems, Computers & Mathematics with Applications, 62 (12); 4783-4795, 2011.
  • 3. Lorenz, E.N., Deterministic Nonperiodic Flow, Journal of the Atmospheric Sciences, 20; 130-141, 1963.
  • 4. Hilborn, R.C., Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers, Oxford University Press, 1994.
  • 5. Li, C., Sprott, J.C., Thio, W., Linearization of the Lorenz system, Physics Letters A, 379 (10); 888-893, 2015.
  • 6. Yang, S.K., Chen, C.L., Yau, H.T., Control of chaos in Lorenz system, Chaos, Solitons & Fractals, 13 (4); 767-780, 2002.
  • 7. Leonov, G.A., Kuznetsov, N.V., On differences and similarities in the analysis of Lorenz, Chen and Lu systems, Applied Mathematics and Computation, 256; 334-343, 2015.
  • 8. Chen, D., Sun, Z., Ma, X., Chen, L., Circuit implementation and model of a new multi-scroll chaotic system, International Journal of Circuit Theory and Applications, 42 (4); 407-424, 2014.
  • 9. Li, Y., Liu, X., Chen, G., Liao, X., A new hyperchaotic Lorenz-type system: Generation, analysis, and implementation, International Journal of Circuit Theory and Applications, 39 (8); 865-879, 2011.
  • 10. Ma, J., Wang, L., Duan, S., Xu, Y., A multi-wing butterfly chaotic system and its implementation, International Journal of Circuit Theory and Applications, doi: 10.1002/cta.2357, 2017.
  • 11. Tlelo-Cuautle, E., Rangel-Magdaleno, J.J., Pano-Azucena, A.D., Obeso-Rodelo, P.J., Nuñez-Perez, J.C., FPGA realization of multi-scroll chaotic oscillators, Communications in Nonlinear Science and Numerical Simulation, 27 (1); 66-80, 2015.
  • 12. Merah, L., Ali-Pacha, A., Said, N.H., Mamat, M., Design and FPGA implementation of Lorenz chaotic system for information security issues, Applied Mathematical Sciences, 7 (5); 237-246, 2013.
  • 13. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A., Determining Lyapunov exponents from time series, Physica D: Nonlinear Phenomena, 16 (3); 285-317, 1985.
  • 14. Rosenstein, M.T., Collins, J.J., De Luca, C.J., A practical method for calculating largest Lyapunov exponents from small data sets, Physica D: Nonlinear Phenomena, 65 (1); 117-134, 1993.
  • 15. Xilinx Inc., System Generator for Digital Signal Processing, http://www.xilinx.com / tools / dsp.htm.
  • 16. Karakaya, B., Yeniceri, R., Yalçın M.E., Wave computer core using fixed-point arithmetic, 2015 IEEE International Symposium on Circuits and Systems (ISCAS), 1514-1517, 2015.
Year 2018, Volume: 2 Issue: 2, 147 - 152, 15.08.2018

Abstract

References

  • 1. Zirkohi, M.M., Model reference type-2 fuzzy sliding mode control for a novel uncertain hyperchaotic system, Journal of Intelligent & Fuzzy Systems, 32 (1); 389-400, 2017.
  • 2. Jia, N., Wang, T., Chaos control and hybrid projective synchronization for a class of new chaotic systems, Computers & Mathematics with Applications, 62 (12); 4783-4795, 2011.
  • 3. Lorenz, E.N., Deterministic Nonperiodic Flow, Journal of the Atmospheric Sciences, 20; 130-141, 1963.
  • 4. Hilborn, R.C., Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers, Oxford University Press, 1994.
  • 5. Li, C., Sprott, J.C., Thio, W., Linearization of the Lorenz system, Physics Letters A, 379 (10); 888-893, 2015.
  • 6. Yang, S.K., Chen, C.L., Yau, H.T., Control of chaos in Lorenz system, Chaos, Solitons & Fractals, 13 (4); 767-780, 2002.
  • 7. Leonov, G.A., Kuznetsov, N.V., On differences and similarities in the analysis of Lorenz, Chen and Lu systems, Applied Mathematics and Computation, 256; 334-343, 2015.
  • 8. Chen, D., Sun, Z., Ma, X., Chen, L., Circuit implementation and model of a new multi-scroll chaotic system, International Journal of Circuit Theory and Applications, 42 (4); 407-424, 2014.
  • 9. Li, Y., Liu, X., Chen, G., Liao, X., A new hyperchaotic Lorenz-type system: Generation, analysis, and implementation, International Journal of Circuit Theory and Applications, 39 (8); 865-879, 2011.
  • 10. Ma, J., Wang, L., Duan, S., Xu, Y., A multi-wing butterfly chaotic system and its implementation, International Journal of Circuit Theory and Applications, doi: 10.1002/cta.2357, 2017.
  • 11. Tlelo-Cuautle, E., Rangel-Magdaleno, J.J., Pano-Azucena, A.D., Obeso-Rodelo, P.J., Nuñez-Perez, J.C., FPGA realization of multi-scroll chaotic oscillators, Communications in Nonlinear Science and Numerical Simulation, 27 (1); 66-80, 2015.
  • 12. Merah, L., Ali-Pacha, A., Said, N.H., Mamat, M., Design and FPGA implementation of Lorenz chaotic system for information security issues, Applied Mathematical Sciences, 7 (5); 237-246, 2013.
  • 13. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A., Determining Lyapunov exponents from time series, Physica D: Nonlinear Phenomena, 16 (3); 285-317, 1985.
  • 14. Rosenstein, M.T., Collins, J.J., De Luca, C.J., A practical method for calculating largest Lyapunov exponents from small data sets, Physica D: Nonlinear Phenomena, 65 (1); 117-134, 1993.
  • 15. Xilinx Inc., System Generator for Digital Signal Processing, http://www.xilinx.com / tools / dsp.htm.
  • 16. Karakaya, B., Yeniceri, R., Yalçın M.E., Wave computer core using fixed-point arithmetic, 2015 IEEE International Symposium on Circuits and Systems (ISCAS), 1514-1517, 2015.
There are 16 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Barış Karakaya 0000-0001-7995-3901

Meral Akarçay Türk This is me

Mustafa Türk

Arif Gülten

Publication Date August 15, 2018
Submission Date February 28, 2018
Acceptance Date May 22, 2018
Published in Issue Year 2018 Volume: 2 Issue: 2

Cite

APA Karakaya, B., Akarçay Türk, M., Türk, M., Gülten, A. (2018). Selection of optimal numerical method for implementation of Lorenz Chaotic system on FPGA. International Advanced Researches and Engineering Journal, 2(2), 147-152.
AMA Karakaya B, Akarçay Türk M, Türk M, Gülten A. Selection of optimal numerical method for implementation of Lorenz Chaotic system on FPGA. Int. Adv. Res. Eng. J. August 2018;2(2):147-152.
Chicago Karakaya, Barış, Meral Akarçay Türk, Mustafa Türk, and Arif Gülten. “Selection of Optimal Numerical Method for Implementation of Lorenz Chaotic System on FPGA”. International Advanced Researches and Engineering Journal 2, no. 2 (August 2018): 147-52.
EndNote Karakaya B, Akarçay Türk M, Türk M, Gülten A (August 1, 2018) Selection of optimal numerical method for implementation of Lorenz Chaotic system on FPGA. International Advanced Researches and Engineering Journal 2 2 147–152.
IEEE B. Karakaya, M. Akarçay Türk, M. Türk, and A. Gülten, “Selection of optimal numerical method for implementation of Lorenz Chaotic system on FPGA”, Int. Adv. Res. Eng. J., vol. 2, no. 2, pp. 147–152, 2018.
ISNAD Karakaya, Barış et al. “Selection of Optimal Numerical Method for Implementation of Lorenz Chaotic System on FPGA”. International Advanced Researches and Engineering Journal 2/2 (August 2018), 147-152.
JAMA Karakaya B, Akarçay Türk M, Türk M, Gülten A. Selection of optimal numerical method for implementation of Lorenz Chaotic system on FPGA. Int. Adv. Res. Eng. J. 2018;2:147–152.
MLA Karakaya, Barış et al. “Selection of Optimal Numerical Method for Implementation of Lorenz Chaotic System on FPGA”. International Advanced Researches and Engineering Journal, vol. 2, no. 2, 2018, pp. 147-52.
Vancouver Karakaya B, Akarçay Türk M, Türk M, Gülten A. Selection of optimal numerical method for implementation of Lorenz Chaotic system on FPGA. Int. Adv. Res. Eng. J. 2018;2(2):147-52.



Creative Commons License

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.