Research Article
BibTex RIS Cite
Year 2020, Volume: 4 Issue: 2, 64 - 75, 15.08.2020
https://doi.org/10.35860/iarej.703104

Abstract

References

  • 1. Sen, O., Yılmaz, C., Thermodynamic performance analysis of geothermal and solar energy assisted power generation and residential cooling system. International Advanced Researches and Engineering Journal, 2020. 04(01): p.41–7.
  • 2. Kandlikar, S.G., A roadmap for implementing minichannels in refrigeration and air-conditioning systems - Current status and future directions. Heat Transfer Enginering, 2007. 28(12): p.973–85.
  • 3. Roth, K., Westphalen, D., Dieckmann, J., Hamilton, S., Goetzler, W., Energy consumption characteristics of commercial building HVAC systems, Volume III: Energy savings potential, 2002. 3.
  • 4. Kandlikar, S.G., Garimella, S., Li, D., Stephane, C., King, M.R., Heat transfer and fluid flow in minichannels and microchannels. 2005, Oxford: UK: Elsevier.
  • 5. Gong, L., Lu, H., Li, H., Xu, M., Parametric numerical study of the flow and heat transfer in a dimpled wavy microchannel. Heat Transf Research, 2016. 47(2): p.105–18.
  • 6. Kaya, H., Ekiciler, R., Arslan, K., Entropy generation analysis of forced convection flow in a semicircular microchannel with TiO2/water nanofluid. Heat Transf Research, 2019. 50(4): p.335–48.
  • 7. Mohammadpourfard, M., Zonouzi, S.A., Mohseni, F., Numerical study of the hydrothermal behavior and exergy destruction of magnetic nanofluid in curved rectangular microchannels. Heat Transf Research, 2015. 46(9): p.795–818.
  • 8. Tiwari, N., Moharana, M.K., Numerical study of thermal enhancement in modified raccoon microchannels. Heat Transf Research, 2019. 50(6): p.519–43.
  • 9. Glazar, V., Frankovic, B., Trp, A., Experimental and numerical study of the compact heat exchanger with different microchannel shapes. International Journal of Refrigeration, 2015. 51: p. 144–53.
  • 10. Ren, T., Ding, G., Wang, T., Hu, H., A general three-dimensional simulation approach for micro-channel heat exchanger based on graph theory. Applied Thermal Engineering, 2013. 59(1–2): p.660–74.
  • 11. Yin, J.M., Bullard, C.W., Hrnjak, P.S., R-744 gas cooler model development and validation. Int J Refrig. 2001. 24: 692–701.
  • 12. Fronk, B.M., Garimella, S., Water-coupled carbon dioxide microchannel gas cooler for heat pump water heaters: Part II - Model development and validation. International Journal of Refrigeration, 2011. 34(1): p.17–28.
  • 13. Fronk, B.M., Garimella, S., Water-coupled carbon dioxide microchannel gas cooler for heat pump water heaters: Part I - Experiments. International Journal of Refrigeration, 2011. 34(1): p.7–16.
  • 14. García-Cascales, J.R., Vera-García, F., Gonzálvez-Maciá, J., Corberán-Salvador, J.M., Johnson, M.W., Kohler, G.T. Compact heat exchangers modeling: Condensation. International Journal of Refrigeration, 2010. 33(1): p.135–47.
  • 15. Kim, M.H., Bullard, C.W., Development of a microchannel evaporator model for a CO2air-conditioning system. Energy,. 2001. 26(10): p.931–48.
  • 16. Yin, X.W., Wang, W., Patnaik, V., Zhou, J.S., Huang, X.C., Evaluation of microchannel condenser characteristics by numerical simulation. International Journal of Refrigeration, 2015. 54: p. 126–41.
  • 17. Park, C.Y., Hrnjak, P., Experimental and numerical study on microchannel and round-tube condensers in a R410A residential air-conditioning system. International Journal of Refrigeration, 2008. 31(5): p. 822–31.
  • 18. Liang, Y.Y., Liu, C.C., Li, C.Z., Chen, J,P.. Experimental and simulation study on the air side thermal hydraulic performance of automotive heat exchangers. Applied Thermal Engineering, 2015. 87: p.305–15.
  • 19. Zhai, R., Yang, Z., Zhang, Y., Lv, Z., Feng, B., Effect of temperature and humidity on the flammability limits of hydrocarbons. Fuel, 2020. 270. Available from: https://doi.org/10.1016/j.fuel.2020.117442
  • 20. Ahmadpour, M.M., Akhavan-Behabadi, M.A., Sajadi, B., Salehi-Kohestani, A., Experimental Study of Lubricating Oil Effect on R600a Condensation inside Micro-Fin Tubes. Heat Transfer Engineering. 2020. p.1–13. Available from: https://doi.org/10.1080/01457632.2020.1735780
  • 21. American Society of Heating R and AE. ASHRAE Handbook-Fundamentals. 2009, Atlanta, GA: ASHRAE Inc.
  • 22. Lohbeck, W., Development and state of conversion to hydrocarbon technology. Proceedings of the International Conference on Ozone Protection Technologies: Washington, D.C.; 1996. p. 247–51.
  • 23. Bergman, T.L., Lavine, A.S., Incropera FP, DeWitt DP. Fundamentals ofHeat and Mass Transfer. 7th ed. 2011, New York: USA: JohnWiley & Sons.
  • 24. Cengel, Y.A., Heat and Mass Transfer: A Practical Approach. 3rd ed. 2007, McGraw-Hill.
  • 25. Kuppan, T., Heat Exchanger Desing Handbook. 2000, NY: USA: Marcel Dekker, Inc.
  • 26. Shah, R.K., Sekulic, D.P., Fundamentals of Heat Exchanger Design. 2003, New York: USA: John Wiley and Sons, Inc.
  • 27. Kakaç, S., Liu, H., Heat Exchangers: Selection, Rating and Thermal Design. 2nd ed. 2002, Boca Raton, USA: CRC Press LLC.
  • 28. Singh, V., Aute, V., Radermacher, R., Numerical approach for modeling air-to-refrigerant fin-and-tube heat exchanger with tube-to-tube heat transfer. Int J Refrig [Internet]. 2008. 31(8):1414–25.
  • 29. Asinari, P., Cecchinato, L., Fornasieri. E., Effects of thermal conduction in microchannel gas coolers for carbon dioxide. International Journal of Refrigeration, 2004. 27(6): p. 577–86.
  • 30. Dittus, F.W., Boelter, L.M., Heat transfer in automobile radiators of the tubular type. Publication in Engineering University California, Berkeley. 1930. 2:p.443.
  • 31. Gnielinski, V., New equations for heat and mass transfer in turbulent pipe and channel flow. International Chemical Engineering, 1976.16: p.359–68.
  • 32. Petukhov, B.S., Heat transfer and friction in turbulent pipe flow with variable physical properties. Advanced Heat Transfer, 1970. 6: p.503–64.
  • 33. Derby, M., Lee, H.J., Peles, Y., Jensen, M.K., Condensation heat transfer in square, triangular, and semi-circular mini-channels. International Journal of Heat and Mass Transfer, 2012. 55(1–3): p.187–97.
  • 34. Saha, S.K., Microchannel Phase Change Transport Phenomena. 2016, Oxford: UK: Butterworth-Heinemann.
  • 35. Filonenko, G.K., Hydraulic resistance in pipes", Heat Exchanger Design Handbook. Teploenergetica, 1954. 1(4): p.40–44.
  • 36. Adams, T.M., Jeter, S.M., Qureshis, Z.H., An experimental investigation of single-phase forced convection in microchannels. International Journal of Heat and Mass Transfer, 1997. 41(6–7): p.851–7.
  • 37. Aute, V., Radermacher, R., Chapter Five - A Validated Framework for Innovation and Design Optimization of Air-to-Refrigerant Heat Exchangers. In: Sparrow EM, Abraham JP, Gorman JMBT-A in HT, Elsevier, 2018. p. 301–32.
  • 38. Chang, Y.J, Wang, C.C., A generalized heat transfer correlation for Iouver fin geometry. International Journal of Heat and Mass Transfer, 1997. 40(3): p.533–44.
  • 39. Kim, M., Bullard, C.W., Air-side thermal hydraulic performance of multi-louvered fin aluminum heat exchangers. International Journal of Refrigeration, 2002. 25: p.390–400.
  • 40. Klein, S.A., Engineering Equation Solver, F-Chart Software. 2006.

Numerical and experimental study on thermal characteristics of louvered fin microchannel air preheaters

Year 2020, Volume: 4 Issue: 2, 64 - 75, 15.08.2020
https://doi.org/10.35860/iarej.703104

Abstract

Microchannel heat exchangers have been gradually getting importance in industrial applications due to offering outstanding benefits. The current study has focused on the development of a numerical model to predict the thermal performance of the microchannel air preheaters (MCPH) for HVAC systems. An experimental study has been performed to validate the numerical model results. A louvered fin multiport microchannel heat exchanger has been employed as an air preheater in the experiments. The proposed model has been developed based on the segment-by-segment approach and calculated the outlet temperature and heat capacity of the MCPH. Different air velocities at the frontal face and varying mass flow rates in passes of the MCPH have been taken into consideration in the model. It has been concluded from experimental data that the model predicts the outlet temperature with an average absolute deviation within ±2% for all investigated test conditions. The proposed model shows high accuracy with respect to temperature calculation. Another conclusion is that the non-uniform air velocity approach improves the precision of the proposed model. The heat capacity predictions with the uniform air velocity approach indicate higher deviations than the non-uniform air velocity approach.

References

  • 1. Sen, O., Yılmaz, C., Thermodynamic performance analysis of geothermal and solar energy assisted power generation and residential cooling system. International Advanced Researches and Engineering Journal, 2020. 04(01): p.41–7.
  • 2. Kandlikar, S.G., A roadmap for implementing minichannels in refrigeration and air-conditioning systems - Current status and future directions. Heat Transfer Enginering, 2007. 28(12): p.973–85.
  • 3. Roth, K., Westphalen, D., Dieckmann, J., Hamilton, S., Goetzler, W., Energy consumption characteristics of commercial building HVAC systems, Volume III: Energy savings potential, 2002. 3.
  • 4. Kandlikar, S.G., Garimella, S., Li, D., Stephane, C., King, M.R., Heat transfer and fluid flow in minichannels and microchannels. 2005, Oxford: UK: Elsevier.
  • 5. Gong, L., Lu, H., Li, H., Xu, M., Parametric numerical study of the flow and heat transfer in a dimpled wavy microchannel. Heat Transf Research, 2016. 47(2): p.105–18.
  • 6. Kaya, H., Ekiciler, R., Arslan, K., Entropy generation analysis of forced convection flow in a semicircular microchannel with TiO2/water nanofluid. Heat Transf Research, 2019. 50(4): p.335–48.
  • 7. Mohammadpourfard, M., Zonouzi, S.A., Mohseni, F., Numerical study of the hydrothermal behavior and exergy destruction of magnetic nanofluid in curved rectangular microchannels. Heat Transf Research, 2015. 46(9): p.795–818.
  • 8. Tiwari, N., Moharana, M.K., Numerical study of thermal enhancement in modified raccoon microchannels. Heat Transf Research, 2019. 50(6): p.519–43.
  • 9. Glazar, V., Frankovic, B., Trp, A., Experimental and numerical study of the compact heat exchanger with different microchannel shapes. International Journal of Refrigeration, 2015. 51: p. 144–53.
  • 10. Ren, T., Ding, G., Wang, T., Hu, H., A general three-dimensional simulation approach for micro-channel heat exchanger based on graph theory. Applied Thermal Engineering, 2013. 59(1–2): p.660–74.
  • 11. Yin, J.M., Bullard, C.W., Hrnjak, P.S., R-744 gas cooler model development and validation. Int J Refrig. 2001. 24: 692–701.
  • 12. Fronk, B.M., Garimella, S., Water-coupled carbon dioxide microchannel gas cooler for heat pump water heaters: Part II - Model development and validation. International Journal of Refrigeration, 2011. 34(1): p.17–28.
  • 13. Fronk, B.M., Garimella, S., Water-coupled carbon dioxide microchannel gas cooler for heat pump water heaters: Part I - Experiments. International Journal of Refrigeration, 2011. 34(1): p.7–16.
  • 14. García-Cascales, J.R., Vera-García, F., Gonzálvez-Maciá, J., Corberán-Salvador, J.M., Johnson, M.W., Kohler, G.T. Compact heat exchangers modeling: Condensation. International Journal of Refrigeration, 2010. 33(1): p.135–47.
  • 15. Kim, M.H., Bullard, C.W., Development of a microchannel evaporator model for a CO2air-conditioning system. Energy,. 2001. 26(10): p.931–48.
  • 16. Yin, X.W., Wang, W., Patnaik, V., Zhou, J.S., Huang, X.C., Evaluation of microchannel condenser characteristics by numerical simulation. International Journal of Refrigeration, 2015. 54: p. 126–41.
  • 17. Park, C.Y., Hrnjak, P., Experimental and numerical study on microchannel and round-tube condensers in a R410A residential air-conditioning system. International Journal of Refrigeration, 2008. 31(5): p. 822–31.
  • 18. Liang, Y.Y., Liu, C.C., Li, C.Z., Chen, J,P.. Experimental and simulation study on the air side thermal hydraulic performance of automotive heat exchangers. Applied Thermal Engineering, 2015. 87: p.305–15.
  • 19. Zhai, R., Yang, Z., Zhang, Y., Lv, Z., Feng, B., Effect of temperature and humidity on the flammability limits of hydrocarbons. Fuel, 2020. 270. Available from: https://doi.org/10.1016/j.fuel.2020.117442
  • 20. Ahmadpour, M.M., Akhavan-Behabadi, M.A., Sajadi, B., Salehi-Kohestani, A., Experimental Study of Lubricating Oil Effect on R600a Condensation inside Micro-Fin Tubes. Heat Transfer Engineering. 2020. p.1–13. Available from: https://doi.org/10.1080/01457632.2020.1735780
  • 21. American Society of Heating R and AE. ASHRAE Handbook-Fundamentals. 2009, Atlanta, GA: ASHRAE Inc.
  • 22. Lohbeck, W., Development and state of conversion to hydrocarbon technology. Proceedings of the International Conference on Ozone Protection Technologies: Washington, D.C.; 1996. p. 247–51.
  • 23. Bergman, T.L., Lavine, A.S., Incropera FP, DeWitt DP. Fundamentals ofHeat and Mass Transfer. 7th ed. 2011, New York: USA: JohnWiley & Sons.
  • 24. Cengel, Y.A., Heat and Mass Transfer: A Practical Approach. 3rd ed. 2007, McGraw-Hill.
  • 25. Kuppan, T., Heat Exchanger Desing Handbook. 2000, NY: USA: Marcel Dekker, Inc.
  • 26. Shah, R.K., Sekulic, D.P., Fundamentals of Heat Exchanger Design. 2003, New York: USA: John Wiley and Sons, Inc.
  • 27. Kakaç, S., Liu, H., Heat Exchangers: Selection, Rating and Thermal Design. 2nd ed. 2002, Boca Raton, USA: CRC Press LLC.
  • 28. Singh, V., Aute, V., Radermacher, R., Numerical approach for modeling air-to-refrigerant fin-and-tube heat exchanger with tube-to-tube heat transfer. Int J Refrig [Internet]. 2008. 31(8):1414–25.
  • 29. Asinari, P., Cecchinato, L., Fornasieri. E., Effects of thermal conduction in microchannel gas coolers for carbon dioxide. International Journal of Refrigeration, 2004. 27(6): p. 577–86.
  • 30. Dittus, F.W., Boelter, L.M., Heat transfer in automobile radiators of the tubular type. Publication in Engineering University California, Berkeley. 1930. 2:p.443.
  • 31. Gnielinski, V., New equations for heat and mass transfer in turbulent pipe and channel flow. International Chemical Engineering, 1976.16: p.359–68.
  • 32. Petukhov, B.S., Heat transfer and friction in turbulent pipe flow with variable physical properties. Advanced Heat Transfer, 1970. 6: p.503–64.
  • 33. Derby, M., Lee, H.J., Peles, Y., Jensen, M.K., Condensation heat transfer in square, triangular, and semi-circular mini-channels. International Journal of Heat and Mass Transfer, 2012. 55(1–3): p.187–97.
  • 34. Saha, S.K., Microchannel Phase Change Transport Phenomena. 2016, Oxford: UK: Butterworth-Heinemann.
  • 35. Filonenko, G.K., Hydraulic resistance in pipes", Heat Exchanger Design Handbook. Teploenergetica, 1954. 1(4): p.40–44.
  • 36. Adams, T.M., Jeter, S.M., Qureshis, Z.H., An experimental investigation of single-phase forced convection in microchannels. International Journal of Heat and Mass Transfer, 1997. 41(6–7): p.851–7.
  • 37. Aute, V., Radermacher, R., Chapter Five - A Validated Framework for Innovation and Design Optimization of Air-to-Refrigerant Heat Exchangers. In: Sparrow EM, Abraham JP, Gorman JMBT-A in HT, Elsevier, 2018. p. 301–32.
  • 38. Chang, Y.J, Wang, C.C., A generalized heat transfer correlation for Iouver fin geometry. International Journal of Heat and Mass Transfer, 1997. 40(3): p.533–44.
  • 39. Kim, M., Bullard, C.W., Air-side thermal hydraulic performance of multi-louvered fin aluminum heat exchangers. International Journal of Refrigeration, 2002. 25: p.390–400.
  • 40. Klein, S.A., Engineering Equation Solver, F-Chart Software. 2006.
There are 40 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Articles
Authors

Anıl Başaran 0000-0003-0651-1453

Ali Yurddaş 0000-0002-4683-142X

Publication Date August 15, 2020
Submission Date March 12, 2020
Acceptance Date May 7, 2020
Published in Issue Year 2020 Volume: 4 Issue: 2

Cite

APA Başaran, A., & Yurddaş, A. (2020). Numerical and experimental study on thermal characteristics of louvered fin microchannel air preheaters. International Advanced Researches and Engineering Journal, 4(2), 64-75. https://doi.org/10.35860/iarej.703104
AMA Başaran A, Yurddaş A. Numerical and experimental study on thermal characteristics of louvered fin microchannel air preheaters. Int. Adv. Res. Eng. J. August 2020;4(2):64-75. doi:10.35860/iarej.703104
Chicago Başaran, Anıl, and Ali Yurddaş. “Numerical and Experimental Study on Thermal Characteristics of Louvered Fin Microchannel Air Preheaters”. International Advanced Researches and Engineering Journal 4, no. 2 (August 2020): 64-75. https://doi.org/10.35860/iarej.703104.
EndNote Başaran A, Yurddaş A (August 1, 2020) Numerical and experimental study on thermal characteristics of louvered fin microchannel air preheaters. International Advanced Researches and Engineering Journal 4 2 64–75.
IEEE A. Başaran and A. Yurddaş, “Numerical and experimental study on thermal characteristics of louvered fin microchannel air preheaters”, Int. Adv. Res. Eng. J., vol. 4, no. 2, pp. 64–75, 2020, doi: 10.35860/iarej.703104.
ISNAD Başaran, Anıl - Yurddaş, Ali. “Numerical and Experimental Study on Thermal Characteristics of Louvered Fin Microchannel Air Preheaters”. International Advanced Researches and Engineering Journal 4/2 (August 2020), 64-75. https://doi.org/10.35860/iarej.703104.
JAMA Başaran A, Yurddaş A. Numerical and experimental study on thermal characteristics of louvered fin microchannel air preheaters. Int. Adv. Res. Eng. J. 2020;4:64–75.
MLA Başaran, Anıl and Ali Yurddaş. “Numerical and Experimental Study on Thermal Characteristics of Louvered Fin Microchannel Air Preheaters”. International Advanced Researches and Engineering Journal, vol. 4, no. 2, 2020, pp. 64-75, doi:10.35860/iarej.703104.
Vancouver Başaran A, Yurddaş A. Numerical and experimental study on thermal characteristics of louvered fin microchannel air preheaters. Int. Adv. Res. Eng. J. 2020;4(2):64-75.



Creative Commons License

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.