Research Article
BibTex RIS Cite
Year 2020, Volume: 4 Issue: 3, 226 - 232, 15.12.2020
https://doi.org/10.35860/iarej.742702

Abstract

References

  • 1. Imbriale, W.A., S. Gao, and L. Boccia., Space Antenna Handbook. 2012, USA: John Wiley & Sons, Inc.
  • 2. Akan, V., and E. Yazgan, Antennas for Space Applications: A Review. Book chapter in Advanced Radio Frequency Antennas for Modern Communication and Medical Systems (Ed. A. Saban), 2020, UK: IntechOpen. p. 139-171.
  • 3. Akan, V. and E. Yazgan, Analysis and design of circularly polarized and frequency tunable microstrip antenna having conical radiation pattern characteristic, in 32nd ESA Antenna Workshop on Antennas for Space Applications 2010: Noordwijk, Netherlands, p.175-177.
  • 4. Zackrisson, J., RUAG space activities in the TT&C, GNSS and data-downlink antenna field, in 11th European Conference on Antennas and Propagation EUCAP2017: Paris, France, p.529-533.
  • 5. Choi, E.C, J. W. Lee, and T.K. Lee, Modified S-band satellite antenna with isoflux pattern and circularly polarized wide beamwidth. IEEE Antennas and Wireless Propagation Letters, 2013.12(10), p. 1319-1322.
  • 6. Colantonio, D. and C. Rosito, A spaceborne telemetry loaded bifilar helical antenna for LEO satellites, in SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC) 2009: Belem, Brazil, p.741-745.
  • 7. Huang, J., Circularly polarized conical patterns from circular microstrip antennas. IEEE Transactions on Antennas and Propagation, 1984.32(9), p. 991-994.
  • 8. Nakano, H., Singly-fed patch antenna radiating a circularly polarized conical beam. Electronics Letters 1990.26(10), p. 638-640.
  • 9. Cahill, R., I. Cartmell, G. Dooren, K. Clibbon, and C. Sillence, Performance of shaped beam quadrifilar antennas on the METOP spacecraft. IEE Proceedings - Microwaves, Antennas and Propagation, 1998.145(1), p.19-24.
  • 10. Akan, V. Electrically small printed antenna for applications on CubeSat and nano‐satellite platforms. Microwave Opt Technol Lett 2015.57(4), p.891–896.
  • 11. Chahat, N., L. R. Amaro, J. Harrell, C. Wang, P. Estabrook, and S. A. Butman, X-Band Choke Ring Horn Telecom Antenna for Interference Mitigation on NASA’s SWOT Mission, IEEE Transactions on Antennas and Propagation, 2016.64(6), p.2075-2082.
  • 12. Fallahzadeh, M., H. Aliakbarian, A. Haddadi, and S. Radiom, Beam shaping of X-band stepped choke ring antenna for LEO satellite applications. IEEE Aerospace and Electronic Systems Magazine, 2018.33(10), p.34-39.
  • 13. Abumunshar, A. J. and K. Sertel, 5:1 Bandwidth dielectric rod antenna using a novel feed structure. IEEE Transactions on Antennas and Propagation, 2017.65(5), p. 2208-2214.
  • 14. Kobayashi, S. R. Mittra, and R. Lampe, Dielectric tapered rod antennas for millimeter-wave applications, IEEE Transactions on Antennas and Propagation, 1982.30(1), p.54-58.
  • 15. Ghassemi, N. and K. Wu, Planar dielectric rod antenna for gigabyte chip-to-chip communication, IEEE Transactions on Antennas and Propagation, 2012.60(10), p.4924-4928.
  • 16. Huang, J., S. J. Chen, Z. Xue, W. Withayachumnankul, and C. Fumeaux, Wideband circularly polarized 3-D printed dielectric rod antenna, IEEE Transactions on Antennas and Propagation, 2020.68(2), p.745-753.
  • 17. Shokouhi, F. and Z. H. Firouzeh, Linear array of dual-polarised slot-coupled dielectric-rod elements for wireless applications, IET Microwaves, Antennas & Propagation, 2019.13(13), p.2284-5474.
  • 18. Milligan, T.A., Modern Antenna Design. 2005, USA: IEEE Press and Wiley Interscience.
  • 19. Hou, Y. Li, Z. Zhang, and Q. Xue, Rectangular dielectric rod antenna fed by air-substrate parallel strip line. IEEE Transactions on Antennas and Propagation, 2019.67(10), p. 6308-6316.
  • 20. Petrella, R. A., K. H. Schoenbach, and S. Xiao, A dielectric rod antenna driven by a pulsed power system. IEEE Transactions on Dielectrics and Electrical Insulation, 2017.24(4), p. 2157-2163.
  • 21. King, H., J. Wong, and C. Zamites, Shaped-beam antennas for satellites. IEEE Transactions on Antennas and Propagation 1966.14(5), p. 641-643.
  • 22. Mueller, G. E. and W. A. Tyrrell, Polyrod antennas. The Bell System Technical Journal, 1947.26(4), p.837-851.
  • 23. Mallach, P., Dielectric radiators for dm and cm waves. Intelligence Interrogation Report, Berlin, Combined Intelligence Objectives Subcommittee 1947: Berlin Germany, p.1567-1589.
  • 24. Wilkes, G., Wavelength lenses. Proceedings of the IRE, 1948.36(2), p.206-212.
  • 25. Silver, S., Microwave Antenna Theory and Design. 1949, New York: McGraw-Hill.

Design of polyrod antenna having isoflux radiation characteristic for satellite communication systems

Year 2020, Volume: 4 Issue: 3, 226 - 232, 15.12.2020
https://doi.org/10.35860/iarej.742702

Abstract

In satellite communication, link margin and therefore antenna radiation characteristics are key factors to ensure providing a robust communication link between space and ground segment. For telemetry/telecommand and payload data transfer, isoflux antennas are employed widely in satellite communication systems to direct electromagnetic wave efficiently. To decrease complexity and manufacturing cost, simple antenna structures are preferred. In this study, after a detailed literature survey, a polyrod antenna has been designed to use in the space segment of Low Earth Orbit satellite communication subsystem. The proposed polyrod antenna has maximum gain at about 600 elevation angle of the antenna. Moreover, its impedance bandwidth is 750MHz (11%) that is fairly adequate to use in high data rate transmitters. By using CST Microwave StudioTM which is a commercially available 3-D electromagnetic time-domain solver, directivity, gain, axial ratio for elevation plane at X-Band, and return loss characteristic have been presented. Based on the obtained results, the designed polyrod antenna can be used where a conical shaped beam radiation pattern is needed.

References

  • 1. Imbriale, W.A., S. Gao, and L. Boccia., Space Antenna Handbook. 2012, USA: John Wiley & Sons, Inc.
  • 2. Akan, V., and E. Yazgan, Antennas for Space Applications: A Review. Book chapter in Advanced Radio Frequency Antennas for Modern Communication and Medical Systems (Ed. A. Saban), 2020, UK: IntechOpen. p. 139-171.
  • 3. Akan, V. and E. Yazgan, Analysis and design of circularly polarized and frequency tunable microstrip antenna having conical radiation pattern characteristic, in 32nd ESA Antenna Workshop on Antennas for Space Applications 2010: Noordwijk, Netherlands, p.175-177.
  • 4. Zackrisson, J., RUAG space activities in the TT&C, GNSS and data-downlink antenna field, in 11th European Conference on Antennas and Propagation EUCAP2017: Paris, France, p.529-533.
  • 5. Choi, E.C, J. W. Lee, and T.K. Lee, Modified S-band satellite antenna with isoflux pattern and circularly polarized wide beamwidth. IEEE Antennas and Wireless Propagation Letters, 2013.12(10), p. 1319-1322.
  • 6. Colantonio, D. and C. Rosito, A spaceborne telemetry loaded bifilar helical antenna for LEO satellites, in SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC) 2009: Belem, Brazil, p.741-745.
  • 7. Huang, J., Circularly polarized conical patterns from circular microstrip antennas. IEEE Transactions on Antennas and Propagation, 1984.32(9), p. 991-994.
  • 8. Nakano, H., Singly-fed patch antenna radiating a circularly polarized conical beam. Electronics Letters 1990.26(10), p. 638-640.
  • 9. Cahill, R., I. Cartmell, G. Dooren, K. Clibbon, and C. Sillence, Performance of shaped beam quadrifilar antennas on the METOP spacecraft. IEE Proceedings - Microwaves, Antennas and Propagation, 1998.145(1), p.19-24.
  • 10. Akan, V. Electrically small printed antenna for applications on CubeSat and nano‐satellite platforms. Microwave Opt Technol Lett 2015.57(4), p.891–896.
  • 11. Chahat, N., L. R. Amaro, J. Harrell, C. Wang, P. Estabrook, and S. A. Butman, X-Band Choke Ring Horn Telecom Antenna for Interference Mitigation on NASA’s SWOT Mission, IEEE Transactions on Antennas and Propagation, 2016.64(6), p.2075-2082.
  • 12. Fallahzadeh, M., H. Aliakbarian, A. Haddadi, and S. Radiom, Beam shaping of X-band stepped choke ring antenna for LEO satellite applications. IEEE Aerospace and Electronic Systems Magazine, 2018.33(10), p.34-39.
  • 13. Abumunshar, A. J. and K. Sertel, 5:1 Bandwidth dielectric rod antenna using a novel feed structure. IEEE Transactions on Antennas and Propagation, 2017.65(5), p. 2208-2214.
  • 14. Kobayashi, S. R. Mittra, and R. Lampe, Dielectric tapered rod antennas for millimeter-wave applications, IEEE Transactions on Antennas and Propagation, 1982.30(1), p.54-58.
  • 15. Ghassemi, N. and K. Wu, Planar dielectric rod antenna for gigabyte chip-to-chip communication, IEEE Transactions on Antennas and Propagation, 2012.60(10), p.4924-4928.
  • 16. Huang, J., S. J. Chen, Z. Xue, W. Withayachumnankul, and C. Fumeaux, Wideband circularly polarized 3-D printed dielectric rod antenna, IEEE Transactions on Antennas and Propagation, 2020.68(2), p.745-753.
  • 17. Shokouhi, F. and Z. H. Firouzeh, Linear array of dual-polarised slot-coupled dielectric-rod elements for wireless applications, IET Microwaves, Antennas & Propagation, 2019.13(13), p.2284-5474.
  • 18. Milligan, T.A., Modern Antenna Design. 2005, USA: IEEE Press and Wiley Interscience.
  • 19. Hou, Y. Li, Z. Zhang, and Q. Xue, Rectangular dielectric rod antenna fed by air-substrate parallel strip line. IEEE Transactions on Antennas and Propagation, 2019.67(10), p. 6308-6316.
  • 20. Petrella, R. A., K. H. Schoenbach, and S. Xiao, A dielectric rod antenna driven by a pulsed power system. IEEE Transactions on Dielectrics and Electrical Insulation, 2017.24(4), p. 2157-2163.
  • 21. King, H., J. Wong, and C. Zamites, Shaped-beam antennas for satellites. IEEE Transactions on Antennas and Propagation 1966.14(5), p. 641-643.
  • 22. Mueller, G. E. and W. A. Tyrrell, Polyrod antennas. The Bell System Technical Journal, 1947.26(4), p.837-851.
  • 23. Mallach, P., Dielectric radiators for dm and cm waves. Intelligence Interrogation Report, Berlin, Combined Intelligence Objectives Subcommittee 1947: Berlin Germany, p.1567-1589.
  • 24. Wilkes, G., Wavelength lenses. Proceedings of the IRE, 1948.36(2), p.206-212.
  • 25. Silver, S., Microwave Antenna Theory and Design. 1949, New York: McGraw-Hill.
There are 25 citations in total.

Details

Primary Language English
Subjects Electrical Engineering
Journal Section Research Articles
Authors

Volkan Akan 0000-0001-7774-8752

Publication Date December 15, 2020
Submission Date May 26, 2020
Acceptance Date August 12, 2020
Published in Issue Year 2020 Volume: 4 Issue: 3

Cite

APA Akan, V. (2020). Design of polyrod antenna having isoflux radiation characteristic for satellite communication systems. International Advanced Researches and Engineering Journal, 4(3), 226-232. https://doi.org/10.35860/iarej.742702
AMA Akan V. Design of polyrod antenna having isoflux radiation characteristic for satellite communication systems. Int. Adv. Res. Eng. J. December 2020;4(3):226-232. doi:10.35860/iarej.742702
Chicago Akan, Volkan. “Design of Polyrod Antenna Having Isoflux Radiation Characteristic for Satellite Communication Systems”. International Advanced Researches and Engineering Journal 4, no. 3 (December 2020): 226-32. https://doi.org/10.35860/iarej.742702.
EndNote Akan V (December 1, 2020) Design of polyrod antenna having isoflux radiation characteristic for satellite communication systems. International Advanced Researches and Engineering Journal 4 3 226–232.
IEEE V. Akan, “Design of polyrod antenna having isoflux radiation characteristic for satellite communication systems”, Int. Adv. Res. Eng. J., vol. 4, no. 3, pp. 226–232, 2020, doi: 10.35860/iarej.742702.
ISNAD Akan, Volkan. “Design of Polyrod Antenna Having Isoflux Radiation Characteristic for Satellite Communication Systems”. International Advanced Researches and Engineering Journal 4/3 (December 2020), 226-232. https://doi.org/10.35860/iarej.742702.
JAMA Akan V. Design of polyrod antenna having isoflux radiation characteristic for satellite communication systems. Int. Adv. Res. Eng. J. 2020;4:226–232.
MLA Akan, Volkan. “Design of Polyrod Antenna Having Isoflux Radiation Characteristic for Satellite Communication Systems”. International Advanced Researches and Engineering Journal, vol. 4, no. 3, 2020, pp. 226-32, doi:10.35860/iarej.742702.
Vancouver Akan V. Design of polyrod antenna having isoflux radiation characteristic for satellite communication systems. Int. Adv. Res. Eng. J. 2020;4(3):226-32.



Creative Commons License

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.