Research Article
BibTex RIS Cite

Thermoeconomic analysis of a geothermal and solar assisted combined organic Rankine and absorption cycle

Year 2022, Volume: 6 Issue: 1, 34 - 42, 15.04.2022
https://doi.org/10.35860/iarej.1014569

Abstract

In this paper, a geothermal and solar-assisted combined system is designed for the electricity and cooling of residences. The geothermal water from the geothermal resource and the heat transfer fluid heated in the parabolic trough collector is used as the heat source in the absorption cooling system. The organic Rankine cycle (ORC) generates power with geothermal water and heat transfer fluid from the absorption cooling cycle. The produced power is supported to the grid. Engineering Equation Solver (EES) and Aspen Plus program are used for thermodynamic and thermoeconomic analysis of the combined system. In these analyzes, the geothermal and solar energy values of Afyonkarahisar city are considered. Geothermal water at a temperature of 130 ºC and a mass flow rate of 85 kg/s and a solar source at 600 W/m2 radiation is used for the combined system. Parametric studies are performed to demonstrate the way unit electricity and cooling costs change according to the geothermal water temperature and solar radiation. The cooling capacity and the net power output of the system are 2720 kW and 2235 kW, respectively. The unit costs of cooling and electricity in the combined system are calculated 0.017 $/kWh and 0.074 $/kWh, respectively.

Project Number

218M739

References

  • 1. Salehi, S., Yari, M.and Rosen, M. A.,Exergoeconomic comparison of solar-assisted absorption heat pumps, solar heaters and gas boiler systems for district heating in Sarein Town, Iran. Applied Thermal Engineering, 2019. 153: p. 409-425.
  • 2. Rahman, A., Abas, N., Dilshad, S.and Saleem, M. S.,A case study of thermal analysis of a solar assisted absorption air-conditioning system using R-410A for domestic applications. Case Studies in Thermal Engineering, 2021. 26: 101008.
  • 3. Yu, J., Tang, Y. M., Chau, K. Y., Nazar, R., Ali, S., and Iqbal, W.,Role of solar-based renewable energy in mitigating CO2 emissions: Evidence from quantile-on-quantile estimation. Renewable Energy, 2021. 182: p. 216-226.
  • 4. El Haj Assad, M., Sadeghzadeh, M., Ahmadi, M. H., Al‐Shabi, M., Albawab, M., Anvari‐Moghaddam, A. and Bani Hani, E.,Space cooling using geothermal single‐effect water/lithium bromide absorption chiller. Energy Science & Engineering, 2021. 9: p. 1747-1760.
  • 5. Mirzaee, M., Zare, R., Sadeghzadeh, M., Maddah, H., Ahmadi, M. H., Acıkkalp, E. and Chen, L., Thermodynamic analyses of different scenarios in a CCHP system with micro turbine–Absorption chiller, and heat exchanger. Energy Conversion and Management, 2019. 198: 111919.
  • 6. Rahman, A., Abas, N., Dilshad, S. and Saleem, M. S.,A case study of thermal analysis of a solar assisted absorption air-conditioning system using R-410A for domestic applications. Case Studies in Thermal Engineering, 2021. 26: 101008.
  • 7. Gunhan, T., Ekren, O., Demir, V., Hepbasli, A., Erek, A.and Sahin, A. S.,Experimental exergetic performance evaluation of a novel solar assisted LiCl–H2O absorption cooling system. Energy and buildings, 2014. 68: p. 138-146.
  • 8. Zhai, X. Q., Qu, M., Li, Y., Wang, R. Z. A review for research and new design options of solar absorption cooling systems. Renewable and sustainable energy reviews, 2011. 15: p. 4416-4423.
  • 9. Hassan, H. Z., & Mohamad, A. A. A review on solar cold production through absorption technology. Renewable and Sustainable Energy Reviews, 2012. 16: p. 5331-5348.
  • 10. Cabrera, F. J., Fernández-García, A., Silva, R. M. P., & Pérez-García, M. Use of parabolic trough solar collectors for solar refrigeration and air-conditioning applications. Renewable and sustainable energy reviews, 2013. 20: p. 103-118.
  • 11. Bellos, E., Tzivanidis, C. and Antonopoulos, K. A., Exergetic, energetic and financial evaluation of a solar driven absorption cooling system with various collector types. Applied Thermal Engineering, 2016. 102: p. 749-759.
  • 12. Parikhani, T., Ghaebi, H.and Rostamzadeh, H.,A novel geothermal combined cooling and power cycle based on the absorption power cycle: Energy, exergy and exergoeconomic analysis. Energy, 2018. 153: p. 265-277.
  • 13. Wang, Y., Chen, T., Liang, Y., Sun, H. and Zhu, Y.,A novel cooling and power cycle based on the absorption power cycle and booster-assisted ejector refrigeration cycle driven by a low-grade heat source: Energy, exergy and exergoeconomic analysis. Energy Conversion and Management, 2020. 204: 112321.
  • 14. Yilmaz, C.,Thermoeconomic cost analysis and comparison of methodologies for Dora II binary geothermal power plant. Geothermics, 2018. 75: p. 48-57.
  • 15. Alibaba, M., Pourdarbani, R., Manesh, M. H. K., Ochoa, G. V. and Forero, J. D.,Thermodynamic, exergo-economic and exergo-environmental analysis of hybrid geothermal-solar power plant based on ORC cycle using emergy concept. Heliyon, 2020. 6: e03758.
  • 16. Calise, F., Cappiello, F. L., d’Accadia, M. D. and Vicidomini, M.,Energy and economic analysis of a small hybrid solar-geothermal trigeneration system: A dynamic approach. Energy, 2020. 208: 118295.
  • 17. Alirahmi, S. M., Dabbagh, S. R., Ahmadi, P. and Wongwises, S.,Multi-objective design optimization of a multi-generation energy system based on geothermal and solar energy. Energy Conversion and Management, 2020. 205: 112426.
  • 18. Ghasemi, H., Sheu, E., Tizzanini, A., Paci, M. and Mitsos, A.,Hybrid solar–geothermal power generation: Optimal retrofitting. Applied energy, 2014. 131: p. 158-170.
  • 19. Heberle, F., Hofer, M., Ürlings, N., Schröder, H., Anderlohr, T.and Brüggemann, D.,Techno-economic analysis of a solar thermal retrofit for an air-cooled geothermal Organic Rankine Cycle power plant. Renewable Energy, 2017. 113: p. 494-502.
  • 20. McTigue, J. D., Castro, J., Mungas, G., Kramer, N., King, J., Turchi, C. and Zhu, G.,Hybridizing a geothermal power plant with concentrating solar power and thermal storage to increase power generation and dispatchability. Applied energy, 2018. 228: p. 1837-1852.
  • 21. Keshvarparast, A., Ajarostaghi, S. S. M. and Delavar, M. A.,Thermodynamic analysis the performance of hybrid solar-geothermal power plant equipped with air-cooled condenser. Applied Thermal Engineering, 2020. 172: 115160.
  • 22. Haghghi, M. A., Mohammadi, Z., Pesteei, S. M., Chitsaz, A. and Parham, K.,Exergoeconomic evaluation of a system driven by parabolic trough solar collectors for combined cooling, heating, and power generation; a case study. Energy, 2020. 192: 116594.
  • 23. Ayub, M., Mitsos, A. and Ghasemi, H.,Thermo-economic analysis of a hybrid solar-binary geothermal power plant. Energy, 2015. 87: p. 326-335.
  • 24. F-Chart Software, EES, engineering equation solver. In: F-Chart Software, Internet Website, www.fchart.com/ees/ees.shtml, 2021.
  • 25. Aspen Plus Version 8.4, Aspen Technology Incorporated, Ten Canal Park, Cambridge, MA, USA, Available from: www.aspentech.com, 2014.
  • 26. Kalogirou, S. A. Solar energy engineering: processes and systems, Academic Press, 2013.
  • 27. Quoilin S, Orosz M, Hemond H, Lemort V. Performance and design optimizationof low-cost solar organic Rankine cycle for remote power generation. Sol Energy, 2011. 85: p. 955–66.
  • 28. Kumar KR, Reddy KS. Thermal analysis of solar parabolic trough with porous discreceiver. Appl Energy 2009. 86: p. 1804–12.
  • 29. Cengel, Y. A., Boles, M. A., Kanoglu, M., Thermodynamics: An Engineering Approach, McGraw-Hill, ninth edition, New York, A.B.D., 2019.
  • 30. Bejan, A., Tsatsaronis, G., Moran, M., Thermal Design and Optimization, Wiley&Sons, New York, 1998.
  • 31. Dhillon B. S., Life Cycle Costing for Engineers, Crc Press, 2009.
  • 32. Lazzaretto, A. and Tsatsaronis, G., SPECO: a systematic and general methodology for calculating efficiencies and costs in thermal systems. Energy, 2006. 31: p. 1257-1289.
  • 33. Behnam, P., Arefi, A., Shafii, M. B. Exergetic and thermoeconomic analysis of a trigeneration system producing electricity, hot water, and fresh water driven by low-temperature geothermal sources. Energy conversion and management, 2018. 157: p. 266-276.
  • 34. Ghiasirad, H., Asgari, N., Saray, R. K., Mirmasoumi, S. Thermoeconomic assessment of a geothermal based combined cooling, heating, and power system, integrated with a humidification-dehumidification desalination unit and an absorption heat transformer. Energy Conversion and Management, 2021. 235: 113969.
Year 2022, Volume: 6 Issue: 1, 34 - 42, 15.04.2022
https://doi.org/10.35860/iarej.1014569

Abstract

Supporting Institution

TÜBİTAK

Project Number

218M739

References

  • 1. Salehi, S., Yari, M.and Rosen, M. A.,Exergoeconomic comparison of solar-assisted absorption heat pumps, solar heaters and gas boiler systems for district heating in Sarein Town, Iran. Applied Thermal Engineering, 2019. 153: p. 409-425.
  • 2. Rahman, A., Abas, N., Dilshad, S.and Saleem, M. S.,A case study of thermal analysis of a solar assisted absorption air-conditioning system using R-410A for domestic applications. Case Studies in Thermal Engineering, 2021. 26: 101008.
  • 3. Yu, J., Tang, Y. M., Chau, K. Y., Nazar, R., Ali, S., and Iqbal, W.,Role of solar-based renewable energy in mitigating CO2 emissions: Evidence from quantile-on-quantile estimation. Renewable Energy, 2021. 182: p. 216-226.
  • 4. El Haj Assad, M., Sadeghzadeh, M., Ahmadi, M. H., Al‐Shabi, M., Albawab, M., Anvari‐Moghaddam, A. and Bani Hani, E.,Space cooling using geothermal single‐effect water/lithium bromide absorption chiller. Energy Science & Engineering, 2021. 9: p. 1747-1760.
  • 5. Mirzaee, M., Zare, R., Sadeghzadeh, M., Maddah, H., Ahmadi, M. H., Acıkkalp, E. and Chen, L., Thermodynamic analyses of different scenarios in a CCHP system with micro turbine–Absorption chiller, and heat exchanger. Energy Conversion and Management, 2019. 198: 111919.
  • 6. Rahman, A., Abas, N., Dilshad, S. and Saleem, M. S.,A case study of thermal analysis of a solar assisted absorption air-conditioning system using R-410A for domestic applications. Case Studies in Thermal Engineering, 2021. 26: 101008.
  • 7. Gunhan, T., Ekren, O., Demir, V., Hepbasli, A., Erek, A.and Sahin, A. S.,Experimental exergetic performance evaluation of a novel solar assisted LiCl–H2O absorption cooling system. Energy and buildings, 2014. 68: p. 138-146.
  • 8. Zhai, X. Q., Qu, M., Li, Y., Wang, R. Z. A review for research and new design options of solar absorption cooling systems. Renewable and sustainable energy reviews, 2011. 15: p. 4416-4423.
  • 9. Hassan, H. Z., & Mohamad, A. A. A review on solar cold production through absorption technology. Renewable and Sustainable Energy Reviews, 2012. 16: p. 5331-5348.
  • 10. Cabrera, F. J., Fernández-García, A., Silva, R. M. P., & Pérez-García, M. Use of parabolic trough solar collectors for solar refrigeration and air-conditioning applications. Renewable and sustainable energy reviews, 2013. 20: p. 103-118.
  • 11. Bellos, E., Tzivanidis, C. and Antonopoulos, K. A., Exergetic, energetic and financial evaluation of a solar driven absorption cooling system with various collector types. Applied Thermal Engineering, 2016. 102: p. 749-759.
  • 12. Parikhani, T., Ghaebi, H.and Rostamzadeh, H.,A novel geothermal combined cooling and power cycle based on the absorption power cycle: Energy, exergy and exergoeconomic analysis. Energy, 2018. 153: p. 265-277.
  • 13. Wang, Y., Chen, T., Liang, Y., Sun, H. and Zhu, Y.,A novel cooling and power cycle based on the absorption power cycle and booster-assisted ejector refrigeration cycle driven by a low-grade heat source: Energy, exergy and exergoeconomic analysis. Energy Conversion and Management, 2020. 204: 112321.
  • 14. Yilmaz, C.,Thermoeconomic cost analysis and comparison of methodologies for Dora II binary geothermal power plant. Geothermics, 2018. 75: p. 48-57.
  • 15. Alibaba, M., Pourdarbani, R., Manesh, M. H. K., Ochoa, G. V. and Forero, J. D.,Thermodynamic, exergo-economic and exergo-environmental analysis of hybrid geothermal-solar power plant based on ORC cycle using emergy concept. Heliyon, 2020. 6: e03758.
  • 16. Calise, F., Cappiello, F. L., d’Accadia, M. D. and Vicidomini, M.,Energy and economic analysis of a small hybrid solar-geothermal trigeneration system: A dynamic approach. Energy, 2020. 208: 118295.
  • 17. Alirahmi, S. M., Dabbagh, S. R., Ahmadi, P. and Wongwises, S.,Multi-objective design optimization of a multi-generation energy system based on geothermal and solar energy. Energy Conversion and Management, 2020. 205: 112426.
  • 18. Ghasemi, H., Sheu, E., Tizzanini, A., Paci, M. and Mitsos, A.,Hybrid solar–geothermal power generation: Optimal retrofitting. Applied energy, 2014. 131: p. 158-170.
  • 19. Heberle, F., Hofer, M., Ürlings, N., Schröder, H., Anderlohr, T.and Brüggemann, D.,Techno-economic analysis of a solar thermal retrofit for an air-cooled geothermal Organic Rankine Cycle power plant. Renewable Energy, 2017. 113: p. 494-502.
  • 20. McTigue, J. D., Castro, J., Mungas, G., Kramer, N., King, J., Turchi, C. and Zhu, G.,Hybridizing a geothermal power plant with concentrating solar power and thermal storage to increase power generation and dispatchability. Applied energy, 2018. 228: p. 1837-1852.
  • 21. Keshvarparast, A., Ajarostaghi, S. S. M. and Delavar, M. A.,Thermodynamic analysis the performance of hybrid solar-geothermal power plant equipped with air-cooled condenser. Applied Thermal Engineering, 2020. 172: 115160.
  • 22. Haghghi, M. A., Mohammadi, Z., Pesteei, S. M., Chitsaz, A. and Parham, K.,Exergoeconomic evaluation of a system driven by parabolic trough solar collectors for combined cooling, heating, and power generation; a case study. Energy, 2020. 192: 116594.
  • 23. Ayub, M., Mitsos, A. and Ghasemi, H.,Thermo-economic analysis of a hybrid solar-binary geothermal power plant. Energy, 2015. 87: p. 326-335.
  • 24. F-Chart Software, EES, engineering equation solver. In: F-Chart Software, Internet Website, www.fchart.com/ees/ees.shtml, 2021.
  • 25. Aspen Plus Version 8.4, Aspen Technology Incorporated, Ten Canal Park, Cambridge, MA, USA, Available from: www.aspentech.com, 2014.
  • 26. Kalogirou, S. A. Solar energy engineering: processes and systems, Academic Press, 2013.
  • 27. Quoilin S, Orosz M, Hemond H, Lemort V. Performance and design optimizationof low-cost solar organic Rankine cycle for remote power generation. Sol Energy, 2011. 85: p. 955–66.
  • 28. Kumar KR, Reddy KS. Thermal analysis of solar parabolic trough with porous discreceiver. Appl Energy 2009. 86: p. 1804–12.
  • 29. Cengel, Y. A., Boles, M. A., Kanoglu, M., Thermodynamics: An Engineering Approach, McGraw-Hill, ninth edition, New York, A.B.D., 2019.
  • 30. Bejan, A., Tsatsaronis, G., Moran, M., Thermal Design and Optimization, Wiley&Sons, New York, 1998.
  • 31. Dhillon B. S., Life Cycle Costing for Engineers, Crc Press, 2009.
  • 32. Lazzaretto, A. and Tsatsaronis, G., SPECO: a systematic and general methodology for calculating efficiencies and costs in thermal systems. Energy, 2006. 31: p. 1257-1289.
  • 33. Behnam, P., Arefi, A., Shafii, M. B. Exergetic and thermoeconomic analysis of a trigeneration system producing electricity, hot water, and fresh water driven by low-temperature geothermal sources. Energy conversion and management, 2018. 157: p. 266-276.
  • 34. Ghiasirad, H., Asgari, N., Saray, R. K., Mirmasoumi, S. Thermoeconomic assessment of a geothermal based combined cooling, heating, and power system, integrated with a humidification-dehumidification desalination unit and an absorption heat transformer. Energy Conversion and Management, 2021. 235: 113969.
There are 34 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Articles
Authors

Ozan Sen 0000-0002-9913-664X

Ceyhun Yılmaz 0000-0002-8827-692X

Project Number 218M739
Publication Date April 15, 2022
Submission Date October 25, 2021
Acceptance Date February 1, 2022
Published in Issue Year 2022 Volume: 6 Issue: 1

Cite

APA Sen, O., & Yılmaz, C. (2022). Thermoeconomic analysis of a geothermal and solar assisted combined organic Rankine and absorption cycle. International Advanced Researches and Engineering Journal, 6(1), 34-42. https://doi.org/10.35860/iarej.1014569
AMA Sen O, Yılmaz C. Thermoeconomic analysis of a geothermal and solar assisted combined organic Rankine and absorption cycle. Int. Adv. Res. Eng. J. April 2022;6(1):34-42. doi:10.35860/iarej.1014569
Chicago Sen, Ozan, and Ceyhun Yılmaz. “Thermoeconomic Analysis of a Geothermal and Solar Assisted Combined Organic Rankine and Absorption Cycle”. International Advanced Researches and Engineering Journal 6, no. 1 (April 2022): 34-42. https://doi.org/10.35860/iarej.1014569.
EndNote Sen O, Yılmaz C (April 1, 2022) Thermoeconomic analysis of a geothermal and solar assisted combined organic Rankine and absorption cycle. International Advanced Researches and Engineering Journal 6 1 34–42.
IEEE O. Sen and C. Yılmaz, “Thermoeconomic analysis of a geothermal and solar assisted combined organic Rankine and absorption cycle”, Int. Adv. Res. Eng. J., vol. 6, no. 1, pp. 34–42, 2022, doi: 10.35860/iarej.1014569.
ISNAD Sen, Ozan - Yılmaz, Ceyhun. “Thermoeconomic Analysis of a Geothermal and Solar Assisted Combined Organic Rankine and Absorption Cycle”. International Advanced Researches and Engineering Journal 6/1 (April 2022), 34-42. https://doi.org/10.35860/iarej.1014569.
JAMA Sen O, Yılmaz C. Thermoeconomic analysis of a geothermal and solar assisted combined organic Rankine and absorption cycle. Int. Adv. Res. Eng. J. 2022;6:34–42.
MLA Sen, Ozan and Ceyhun Yılmaz. “Thermoeconomic Analysis of a Geothermal and Solar Assisted Combined Organic Rankine and Absorption Cycle”. International Advanced Researches and Engineering Journal, vol. 6, no. 1, 2022, pp. 34-42, doi:10.35860/iarej.1014569.
Vancouver Sen O, Yılmaz C. Thermoeconomic analysis of a geothermal and solar assisted combined organic Rankine and absorption cycle. Int. Adv. Res. Eng. J. 2022;6(1):34-42.



Creative Commons License

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.