Year 2022,
Volume: 6 Issue: 2, 100 - 105, 15.08.2022
Kemal Doğan
,
Ali Akbar Hussaını
,
Mehmet Okan Erdal
,
Murat Yıldırım
References
- 1. Galieriková, A., and M. Materna., World Seaborne Trade One of Main Cause for Oil Spills ?. Transportation Research Procedia, 2020. 44: p. 297–304.
- 2. Brussaard, C. P. D., Peperzak, L., Beggah, S., Wick, L. Y., Wuerz, B., Weber, J., Arey, J. S., Burg, B. Van Der, Jonas, A., Huisman, J., & Meer, J. R. Van Der., Immediate ecotoxicological effects of short-lived oil spills on marine biota. Nature Communications, 2016. 7: p. 11206.
- 3. Cakir, E., Sevgili, C., and Fiskin, R., Modelling of possible tanker accident oil spills in the Istanbul Strait in order to demonstrate the dispersion and toxic effects of oil pollution. Transportation Research Part D: Transport and Environment, 2021. 90: 102662.
- 4. Yildiz, S., Sönmez, V. Z., Sivri, N., Loughney, S., and Wang, J., Modelling of possible tanker accident oil spills in the Istanbul Strait in order to demonstrate the dispersion and toxic effects of oil pollution. Environ Monit Assess, 2021. 193: 538.
- 5. Yue, X., Li, Z., Zhang, T., Yang, D., and Qiu, F., Design and fabrication of superwetting fiber-based membranes for oil/water separation applications. Chemical Engineering Journal, 2019. 364: p. 292–309.
- 6. Hazlett, R.N., Fibrous Bed Coalescence of Water Steps in the Coalescence Process. Industrial & engineering chemistry fundamentals, 1969. 8(4): p. 625–632.
- 7. Bansal, S., Arnim, V.V., Stegmaier, T., and Planck, H., Effect of fibrous filter properties on the oil-in-water-emulsion separation and filtration performance. Journal of Hazardous Materials, 2011. 190(1–3): p. 45–50.
- 8. Deng, D., Prendergast, D.P., MacFarlane, J., Bagatin, R., Stellacci, F., and Gschwend, P.M,. Hydrophobic Meshes for Oil Spill Recovery Devices. ACS Applied Material Interfaces, 2013. 5(3): p. 774–781.
- 9. Kordjazi, S., Kamyab, K., and Hemmatinejad, N., Super-hydrophilic/oleophobic chitosan/acrylamide hydrogel: an efficient water/oil separation filter. Advanced Composites Hybrid Materials, 2020. 3(2): p. 167–176.
- 10. Rohrbach, K., Li, Y., Zhu, H., Liu, Z., Dai, J., Andreasen, J., and Hu, L., A cellulose based hydrophilic, oleophobic hydrated filter for water/oil separation. Chemical Communication, 2014. 50: p. 13296-13299.
- 11. Wei, Z., Lian, Y., Wang, X., Long, S., and Yang, J., A novel high-durability oxidized poly (arylene sulfide sulfone) electrospun nanofibrous membrane for direct water-oil separation. Separation and Purification Technology, 2020. 234: 116012.
- 12. Cheng, XQ., Jiao, Y., Sun, Z., Yang, X., Cheng, Z., Bai, Q., Zhang, Y., Wang, k., and Shao, L., Constructing Scalable Superhydrophobic Membranes for Ultrafast Water–Oil Separation. ACS Nano, 2021. 15(2): p. 3500–3508.
- 13. Liu, F., Ma, M., Zang, D., Gao, Z., and Wang, C., Fabrication of superhydrophobic/superoleophilic cotton for application in the field of water/oil separation. Carbohydrate Polymers, 2014. 103: p. 480–487.
- 14. Shin, C., and Chase, G.G., Separation of Water‐in‐Oil Emulsions Using Glass Fiber Media Augmented with Polymer Nanofibers. Journal of Dispersion Science and Technology, 2006. 27(4): p. 517-522.
- 15. Sokolović, RMŠ., and Sokolović, SM., Effect of the Nature of Different Polymeric Fibers on Steady-State Bed Coalescence of an Oil-in-Water Emulsion. Industrial & engineering chemistry research, 2004. 43(20): p. 6490–6495.
- 16. Speth, H., Pfennig, A., Chatterjee, M., and Franken, H., Coalescence of secondary dispersions in fiber beds. Separation and purification technology, 2002. 29(2): p. 113-119.
- 17. Shin, C., and Chase, G., The effect of wettability on drop attachment to glass rods. Journal of colloid and interface science, 2004. 272(1): p. 186–190.
- 18. Fan, L., Yan, J., He, H., Deng, N., Zhao, Y., Kang, W., and Cheng, B., Electro-blown spun PS/PAN fibrous membrane for highly efficient oil/water separation. Fibers and Polymers, 2017. 18(10): 1988-1994.
- 19. Shin, C., and Chase, GG., Water-in-Oil Coalescence in Micro-Nanofiber Composite Filters. AIChE journal, 2004. 50(2): p. 343-350.
- 20. Qiao, Y., Zhao, L., Li, P., Sun, H., and Li, S., Electrospun polystyrene/polyacrylonitrile fiber with high oil sorption capacity. Journal of Reinforced Plastics and Composites, 2014. 33(20): p. 1849-1858.
- 21. Zhu, H., Qiu, S., Jiang, W., Wu, D., and Zhang, C., Evaluation of Electrospun Polyvinyl Chloride/Polystyrene Fibers As Sorbent Materials for Oil Spill Cleanup. Environmental science & technology, 2011. 45(10): p. 4527-4531.
- 22. Pham, VH., and Dickerson, JH., Superhydrophobic Silanized Melamine Sponges as High Efficiency Oil Absorbent Materials. ACS applied materials & interfaces, 2014. 6(16): p. 14181-14188.
- 23. Wang, N., Maximiuk, L., Fenn, D., Nickerson, MT., Hou, A., Development of a method for determining oil absorption capacity in pulse flours and protein materials. Cereal Chemistry, 2020. 97(6): p. 1111-1117.
- 24. George, G., and Anandhan, S., Glass fiber–supported NiO nanofiber webs for reduction of CO and hydrocarbon emissions from diesel engine exhaust. Journal of Materials Research, 2014. 29(20): p. 2451-2465.
- 25. Mylläri, V., Ruoko, T-P., Syrjälä, S., A comparison of rheology and FTIR in the study of polypropylene and polystyrene photodegradation. Journal of Applied Polymer Science, 2015. 132(28): 42246.
- 26. Ma, W., Zhang, Q., Hua, D., Xiong, R., Zhao, J., Rao, W., Huang, S., Zhan, X., Chen, F. and Huang, C., Electrospun fibers for oil-water separation. Rsc Advances, 2016. 6(16): p. 12868-12884.
- 27. Shan, W., Du, J., Yang, K., Ren, T., Wan, D., and Pu, H., Superhydrophobic and superoleophilic polystyrene/carbon nanotubes foam for oil/water separation. Journal of Environmental Chemical Engineering, 2021. 9(5): p. 106038.
- 28. Wang, L., Zhang, J., Wang, S., Yu, J., Hu, W., and Jiao, F., Preparation of a polystyrene-based super-hydrophilic mesh and evaluation of its oil/water separation performance. Journal of Membrane Science, 2020. 597: p. 117747.
- 29. Zhang, L., Gu, J., Song, L., Chen, L., Huang, Y., Zhang, J., and Chen, T., Underwater superoleophobic carbon nanotubes/core–shell polystyrene@Au nanoparticles composite membrane for flow-through catalytic decomposition and oil/water separation. Journal of Materials Chemistry A, 2016. 4(28): 10810-10815.
- 30. Guo, P., Zhai, S-R., Xiao, Z-Y., Zhang, F., An, Q-D., Song, X-W., Preparation of superhydrophobic materials for oil/water separation and oil absorption using PMHS–TEOS-derived xerogel and polystyrene. Journal of sol-gel science and technology, 2014. 72(2): p. 385-393.
- 31. Moatmed, SM., Khedr, MH., El-dek, SI., Kim, H-Y., and El-Deen, AG., Highly efficient and reusable superhydrophobic/superoleophilic polystyrene@ Fe3O4 nanofiber membrane for high-performance oil/water separation. Journal of Environmental Chemical Engineering, 2019. 7(6): p. 103508.
- 32. Gu, J., Xiao, P., Chen, J., Liu, F., Huang, Y., Li, G., ... & Chen, T. Robust preparation of superhydrophobic polymer/carbon nanotube hybrid membranes for highly effective removal of oils and separation of water-in-oil emulsions. Journal of Materials Chemistry A, 2014. 2(37): p. 15268-15272.
Examining the hydrophobic properties of electrospun oxide-induced polystyrene nanofibers for application in oil-water separation
Year 2022,
Volume: 6 Issue: 2, 100 - 105, 15.08.2022
Kemal Doğan
,
Ali Akbar Hussaını
,
Mehmet Okan Erdal
,
Murat Yıldırım
Abstract
Nanofibers have great importance in the membrane technology used in hydrophobic surface filtration studies applied to water-oil separation products. This study improves upon the hydrophobic properties of electrospun polystyrene-based nanofibers by increasing surface contact angles. As a result, nanofibers have been produced by adding ZnO, MoO3, NiO, SiO2, and TiO2 additives to the polystyrene (PS)/dimethylformamide (DMF) polymer solution at 5% of the mass. Surface contact angle (CA), fourier-transform infrared spectroscopy (FTIR), and scanning electron microscope (SEM) images of the nanofibers were taken. The obtained results were evaluated and show the fiber diameter to range from 555 to 1553 nm. The addition process was observed to be able to affect the polystyrene fiber’s ability to retain water. Moreover, surface contact angle of polystyrene increased to 143° by TiO2 addition. Furthermore, the highest oil-carrying capacity is concluded to have been observed on the SiO2 and MoO3 doped fibers.
References
- 1. Galieriková, A., and M. Materna., World Seaborne Trade One of Main Cause for Oil Spills ?. Transportation Research Procedia, 2020. 44: p. 297–304.
- 2. Brussaard, C. P. D., Peperzak, L., Beggah, S., Wick, L. Y., Wuerz, B., Weber, J., Arey, J. S., Burg, B. Van Der, Jonas, A., Huisman, J., & Meer, J. R. Van Der., Immediate ecotoxicological effects of short-lived oil spills on marine biota. Nature Communications, 2016. 7: p. 11206.
- 3. Cakir, E., Sevgili, C., and Fiskin, R., Modelling of possible tanker accident oil spills in the Istanbul Strait in order to demonstrate the dispersion and toxic effects of oil pollution. Transportation Research Part D: Transport and Environment, 2021. 90: 102662.
- 4. Yildiz, S., Sönmez, V. Z., Sivri, N., Loughney, S., and Wang, J., Modelling of possible tanker accident oil spills in the Istanbul Strait in order to demonstrate the dispersion and toxic effects of oil pollution. Environ Monit Assess, 2021. 193: 538.
- 5. Yue, X., Li, Z., Zhang, T., Yang, D., and Qiu, F., Design and fabrication of superwetting fiber-based membranes for oil/water separation applications. Chemical Engineering Journal, 2019. 364: p. 292–309.
- 6. Hazlett, R.N., Fibrous Bed Coalescence of Water Steps in the Coalescence Process. Industrial & engineering chemistry fundamentals, 1969. 8(4): p. 625–632.
- 7. Bansal, S., Arnim, V.V., Stegmaier, T., and Planck, H., Effect of fibrous filter properties on the oil-in-water-emulsion separation and filtration performance. Journal of Hazardous Materials, 2011. 190(1–3): p. 45–50.
- 8. Deng, D., Prendergast, D.P., MacFarlane, J., Bagatin, R., Stellacci, F., and Gschwend, P.M,. Hydrophobic Meshes for Oil Spill Recovery Devices. ACS Applied Material Interfaces, 2013. 5(3): p. 774–781.
- 9. Kordjazi, S., Kamyab, K., and Hemmatinejad, N., Super-hydrophilic/oleophobic chitosan/acrylamide hydrogel: an efficient water/oil separation filter. Advanced Composites Hybrid Materials, 2020. 3(2): p. 167–176.
- 10. Rohrbach, K., Li, Y., Zhu, H., Liu, Z., Dai, J., Andreasen, J., and Hu, L., A cellulose based hydrophilic, oleophobic hydrated filter for water/oil separation. Chemical Communication, 2014. 50: p. 13296-13299.
- 11. Wei, Z., Lian, Y., Wang, X., Long, S., and Yang, J., A novel high-durability oxidized poly (arylene sulfide sulfone) electrospun nanofibrous membrane for direct water-oil separation. Separation and Purification Technology, 2020. 234: 116012.
- 12. Cheng, XQ., Jiao, Y., Sun, Z., Yang, X., Cheng, Z., Bai, Q., Zhang, Y., Wang, k., and Shao, L., Constructing Scalable Superhydrophobic Membranes for Ultrafast Water–Oil Separation. ACS Nano, 2021. 15(2): p. 3500–3508.
- 13. Liu, F., Ma, M., Zang, D., Gao, Z., and Wang, C., Fabrication of superhydrophobic/superoleophilic cotton for application in the field of water/oil separation. Carbohydrate Polymers, 2014. 103: p. 480–487.
- 14. Shin, C., and Chase, G.G., Separation of Water‐in‐Oil Emulsions Using Glass Fiber Media Augmented with Polymer Nanofibers. Journal of Dispersion Science and Technology, 2006. 27(4): p. 517-522.
- 15. Sokolović, RMŠ., and Sokolović, SM., Effect of the Nature of Different Polymeric Fibers on Steady-State Bed Coalescence of an Oil-in-Water Emulsion. Industrial & engineering chemistry research, 2004. 43(20): p. 6490–6495.
- 16. Speth, H., Pfennig, A., Chatterjee, M., and Franken, H., Coalescence of secondary dispersions in fiber beds. Separation and purification technology, 2002. 29(2): p. 113-119.
- 17. Shin, C., and Chase, G., The effect of wettability on drop attachment to glass rods. Journal of colloid and interface science, 2004. 272(1): p. 186–190.
- 18. Fan, L., Yan, J., He, H., Deng, N., Zhao, Y., Kang, W., and Cheng, B., Electro-blown spun PS/PAN fibrous membrane for highly efficient oil/water separation. Fibers and Polymers, 2017. 18(10): 1988-1994.
- 19. Shin, C., and Chase, GG., Water-in-Oil Coalescence in Micro-Nanofiber Composite Filters. AIChE journal, 2004. 50(2): p. 343-350.
- 20. Qiao, Y., Zhao, L., Li, P., Sun, H., and Li, S., Electrospun polystyrene/polyacrylonitrile fiber with high oil sorption capacity. Journal of Reinforced Plastics and Composites, 2014. 33(20): p. 1849-1858.
- 21. Zhu, H., Qiu, S., Jiang, W., Wu, D., and Zhang, C., Evaluation of Electrospun Polyvinyl Chloride/Polystyrene Fibers As Sorbent Materials for Oil Spill Cleanup. Environmental science & technology, 2011. 45(10): p. 4527-4531.
- 22. Pham, VH., and Dickerson, JH., Superhydrophobic Silanized Melamine Sponges as High Efficiency Oil Absorbent Materials. ACS applied materials & interfaces, 2014. 6(16): p. 14181-14188.
- 23. Wang, N., Maximiuk, L., Fenn, D., Nickerson, MT., Hou, A., Development of a method for determining oil absorption capacity in pulse flours and protein materials. Cereal Chemistry, 2020. 97(6): p. 1111-1117.
- 24. George, G., and Anandhan, S., Glass fiber–supported NiO nanofiber webs for reduction of CO and hydrocarbon emissions from diesel engine exhaust. Journal of Materials Research, 2014. 29(20): p. 2451-2465.
- 25. Mylläri, V., Ruoko, T-P., Syrjälä, S., A comparison of rheology and FTIR in the study of polypropylene and polystyrene photodegradation. Journal of Applied Polymer Science, 2015. 132(28): 42246.
- 26. Ma, W., Zhang, Q., Hua, D., Xiong, R., Zhao, J., Rao, W., Huang, S., Zhan, X., Chen, F. and Huang, C., Electrospun fibers for oil-water separation. Rsc Advances, 2016. 6(16): p. 12868-12884.
- 27. Shan, W., Du, J., Yang, K., Ren, T., Wan, D., and Pu, H., Superhydrophobic and superoleophilic polystyrene/carbon nanotubes foam for oil/water separation. Journal of Environmental Chemical Engineering, 2021. 9(5): p. 106038.
- 28. Wang, L., Zhang, J., Wang, S., Yu, J., Hu, W., and Jiao, F., Preparation of a polystyrene-based super-hydrophilic mesh and evaluation of its oil/water separation performance. Journal of Membrane Science, 2020. 597: p. 117747.
- 29. Zhang, L., Gu, J., Song, L., Chen, L., Huang, Y., Zhang, J., and Chen, T., Underwater superoleophobic carbon nanotubes/core–shell polystyrene@Au nanoparticles composite membrane for flow-through catalytic decomposition and oil/water separation. Journal of Materials Chemistry A, 2016. 4(28): 10810-10815.
- 30. Guo, P., Zhai, S-R., Xiao, Z-Y., Zhang, F., An, Q-D., Song, X-W., Preparation of superhydrophobic materials for oil/water separation and oil absorption using PMHS–TEOS-derived xerogel and polystyrene. Journal of sol-gel science and technology, 2014. 72(2): p. 385-393.
- 31. Moatmed, SM., Khedr, MH., El-dek, SI., Kim, H-Y., and El-Deen, AG., Highly efficient and reusable superhydrophobic/superoleophilic polystyrene@ Fe3O4 nanofiber membrane for high-performance oil/water separation. Journal of Environmental Chemical Engineering, 2019. 7(6): p. 103508.
- 32. Gu, J., Xiao, P., Chen, J., Liu, F., Huang, Y., Li, G., ... & Chen, T. Robust preparation of superhydrophobic polymer/carbon nanotube hybrid membranes for highly effective removal of oils and separation of water-in-oil emulsions. Journal of Materials Chemistry A, 2014. 2(37): p. 15268-15272.