Research Article
BibTex RIS Cite

Investigation of mechanical properties and thermal conductivity coefficients of 3D printer materials

Year 2023, Volume: 7 Issue: 3, 146 - 156, 15.12.2023
https://doi.org/10.35860/iarej.1303538

Abstract

The demand for 3D printer technology and products, one of the additive manufacturing methods, is increasing daily in the sectoral and academic fields. Many types of polymer-based filaments are used in 3D printers, pure or filled/reinforcement. Utilizing these specialized materials in places suitable for their mechanical and thermal properties will help efficiently use resources. Using 3D printers, it is possible to manufacture products that provide thermal insulation or good heat conduction in heating and cooling areas. Especially due to the energy requirements for heating and cooling, it is very important to know the thermal performance of materials to ensure and maintain energy efficiency. This study experimentally investigated the mechanical properties and heat conduction coefficients of 3D printed parts. The experiments were conducted with seven different filament materials (PLA, PLA+, PLA-CF, PLA Wood, Tough PLA, ABS+, TPU) and three layer thicknesses (0.1, 0.2, and 0.3 mm). Samples for tensile testing, hardness, and thermal conductivity coefficient measurements were produced, and measurements were performed. In the experiments, the highest tensile strength was obtained in PLA-CF with 0.3 mm layer thickness, and the lowest tensile strength was obtained in PLA Wood with 0.3 mm layer thickness. Tensile strength decreased with an increasing layer thickness in PLA, PLA Wood, ABS+, and TPU, while it increased in PLA-CF. The highest tensile strength of PLA+ was determined to be 0.2 mm and 0.1 mm layer thickness in Tough PLA. Hardness results showed minimal change in hardness values with increasing layer thickness. The thermal conductivity values of the samples varied according to the additives and layer thicknesses. The highest thermal conductivity increase was measured in PLA-CF with 11.84%, and the lowest thermal conductivity decrease was measured in Tough PLA with 9.44%.

References

  • 1. Tiseo, I., Annual production of plastics worldwide from 1950 to 2020, Statisca, 2021. 11: p. 10-21.
  • 2. Da Costa, J.P., T. Rocha-Santos, and A.C. Duarte, The environmental impacts of plastics and micro-plastics use, waste and pollution: EU and national measures. EPRS: European Parliamentary Research Service, 19 Aug 2020, Belgium.
  • 3. Moetazedian, A., A. Gledall, X. Han, A. Ekinci, E. Mele, and V. V. Silberschmidt, Mechanical performance of 3D printed polylactide during degradation. Additive Manufacturing, 2021. 38: p. 101764.
  • 4. Patti, A., S. Acierno, G. Cicala, M. Zarrelli, and D. Acierno, Assessment of recycled PLA-based filament for 3D printing. Materials Proceedings, 2021. 7(1): p. 16-23.
  • 5. Garrison, T.F., A. Murawski, and R. L. Quirino, Bio-based polymers with potential for biodegradability, Polymers, 2016. 8(7): p. 262-271.
  • 6. Solomon, I.J., P. Sevvel, and J. Gunasekaran, A review on the various processing parameters in FDM, Materials Today: Proceedings, 2021. 37: p. 509-514.
  • 7. Aydin, M., B. Güler, and K. Çetinkaya, Dikey Ekstrüzyon (Filament) Sistemi Tasarim Ve Prototip İmalati, International Journal of 3D Printing Technologies and Digital Industry, 2018. 2(1), p. 1-10.
  • 8. Mirón, V., S. Ferrandiz, D. Juarez, and A. Mengual, Manufacturing and characterization of 3D printer filament using tailoring materials, Procedia Manufacturing, 2017. 13: p. 888-894.
  • 9. Tanabi, H. Investigation of the temperature effect on the mechanical properties of 3D printed composites, International Advanced Researches and Engineering Journal, 2021. 5 (2): p. 188-193.
  • 10. Shindé, S.L. and J. Goela, High thermal conductivity materials, Springer, 2006. 91: p. 167-198.
  • 11. Singh, R., G. S. Sandhu, R. Penna and I. Farina, "Investigations for thermal and electrical conductivity of ABS-graphene blended prototypes, Materials, 10(8): p. 881-898.
  • 12. Rumeysa, B. and M. Öksüz, Polimer Malzemelerin Isıl İletkenlik Özelikleri, https://www.plastik-ambalaj.com/en/plastic-packaging-article/3014-polimer-malzemelerin-is-l-iletkenlik-oezelikleri, Ocak 23 2022.
  • 13. Sandhu, S., Investigations for Development of ABS-Grephene Blended Feed Stock Filament for FDM Applications, PhD. Thesis, Guru Nanak Dev Engineering College Ludhiana, India, 2017.
  • 14. Kazmer, D., Three-dimensional printing of plastics, in Applied plastics engineering handbook, Processing, Materials, and Applications, 2017. p. 617-634.
  • 15. Wondu, E., Z.C. Lule, and J. Kim, Improvement of dielectric properties and thermal conductivity of TPU with alumina-encapsulated rGO, Polymer Testing, 2021. 102: p. 107322.
  • 16. Xiong, J., Z. Zheng, X. Qin, M. Li, H. Li, and X. Wang, The thermal and mechanical properties of a polyurethane/multi-walled carbon nanotube composite, Carbon, 2006. 44(13): p. 2701-2707.
  • 17. Ma, X.-Y. and W.-D. Zhang, Effects of flower-like ZnO nanowhiskers on the mechanical, thermal and antibacterial properties of waterborne polyurethane, Polymer Degradation and Stability, 2009. 94(7): p. 1103-1109.
  • 18. Kuan, H.-C., C. C-M. Ma, W-P. Chang, S-M. Yuen, H-H. Wu, and T-M. Lee. Synthesis, thermal, mechanical and rheological properties of multiwall carbon nanotube/waterborne polyurethane nanocomposite, Composites Science and Technology, 2005. 65(11-12): p. 1703-1710.
  • 19. Wondu, E., Z. Lule and J. Kim, Thermal conductivity and mechanical properties of thermoplastic polyurethane-/silane-modified Al2O3 composite fabricated via melt compounding, Polymers, 2019 11(7): p. 1103.
  • 20. Yuan, C., B. Duan, L. Li, B. Xie, M. Huang, and X. Luo, Thermal conductivity of polymer-based composites with magnetic aligned hexagonal boron nitride platelets, ACS applied materials & interfaces, 2015. 7(23): p. 13000-13006.
  • 21. Xie, B.-H., X. Huang, and G.-J. Zhang, "High thermal conductive polyvinyl alcohol composites with hexagonal boron nitride microplatelets as fillers", Composites Science and Technology, 2013. 85: p. 98-103.
  • 22. Ha, S.M., O. H. Kwon, Y. G. Oh, Y. S. Kim, J. C. Won, B. G. Kim, Y. Yoo, Thermally conductive polyamide 6/carbon filler composites based on a hybrid filler system, Science and technology of advanced materials, 2015. 16: p. 1-10.
  • 23. Choi, S.W., K. H. Yoon, and. S. S. Jeong, Morphology and thermal conductivity of polyacrylate composites containing aluminum/multi-walled carbon nanotubes, Composites Part A: Applied Science and Manufacturing, 2013. 45: p. 1-5.
  • 24. Yu, A., R. Ramesh, X. Sun, E. Bekyarova, M.E. Itkis, and R.C. Haddon, Enhanced thermal conductivity in a hybrid graphite nanoplatelet–carbon nanotube filler for epoxy composites, Advanced Materials, 2008. 20(24): p. 4740-4744.
  • 25. Incorporated. P.S. 3 Types of Plastic Used in 3D Printing, https://www.polymersolutions.com/blog/plastic-in-3d-printing/, Feb 12, 2023.
  • 26. Kyutoku, H., N. Maeda, H. Sakamoto, and K. Yamada, Effect of surface treatment of cellulose fiber (CF) on durability of PLA/CF bio-composites, Carbohydrate polymers, 2019. 203: p. 95-102.
  • 27. Ultimaker. Ultimaker Tough PLA TDS. https://support.makerbot.com/s/article/1667411002379, 17 Feb 2023.
  • 28. Ayrilmis, N., M. Kariz, J.H. Kwon, and M. K. Kuzman, Effect of printing layer thickness on water absorption and mechanical properties of 3D-printed wood/PLA composite materials, The International Journal of Advanced Manufacturing Technology, 2019. 102: p. 2195-2200.
  • 29. Guessasma, S., S. Belhabib, and H. Nouri, Microstructure and mechanical performance of 3D printed wood-PLA/PHA using fused deposition modelling: Effect of printing temperature, Polymers, 2019. 11(11): p. 1778.
  • 30. Magri, A.E., K. E. Mabrouk, and M. Touhami, Mechanical properties of CF-reinforced PLA parts manufactured by fused deposition modeling, Journal of Thermoplastic Composite Materials, 2021. 34(5): p. 581-595.
  • 31. Abbott, A., G.P. Tandom, R.L. Bradford, R.L. Koerner, and J.W. Baur, Process-structure-property effects on ABS bond strength in fused filament fabrication, Additive Manufacturing, 2018. 19: p. 29-38.
  • 32. Petrović, Z.S. and J. Ferguson, Polyurethane elastomers", Progress in Polymer Science, 1991. 16(5): p. 695-836.
  • 33. Ultimaker. Ultimaker PLA TDS, https://support.makerbot.com/s/article/1667410781972, 11 Ekim 2022.
  • 34. eSUN, PLA+, https://www.esun3d.com/uploads/ eSUN_PLA+-Filament_TDS_V4.0.pdf, 22 Ocak 2023.
  • 35. Filameon. PLA-CF 15 Filament, https://www.filameon.com/urun/filameon-pla-cf-15-filament/#%20, 06 Eylül 202.
  • 36. Filameon. PLA Wood, https://www.filameon.com/ urun/filameon-pla-wood-filament/, 05 Kasım 2022.
  • 37. eSUN, ABS+, https://www.esun3d.com/ uploads/eSUN_ABS+-Filament_TDS_V4.0.pdf, 13 Aralık 2022.
  • 38. Filament, S. TPU 92A, https://savafilament.com/standart-92a, 11 April 2022.
  • 39. Nuñez, P., A. Rivas, E.G. Plaza, E. Beamud, and A.S. Lobera, Dimensional and surface texture characterization in fused deposition modelling (FDM) with ABS plus, Procedia Engineering, 2015. 132: 856-863.
  • 40. Şentürk, B., K. Çetin, S.N. Ürküt, N. Anaç, N. and O. Koçar, Jig design and manufacturing for adhesive thickness control in adhesive joints, Journal of Materials and Manufacturing, 2022. 1(2): p. 17-23.
  • 41. Qi, H., K. Joyce, and M. Boyce, Durometer hardness and the stress-strain behavior of elastomeric materials, Rubber chemistry and technology, 2003. 76(2): p. 419-435.
  • 42. Topuz, A., B. Erdogan and O. Aycan, Determination and measurement of some thermophysical properties of nanofluids and comparison with literature studies, Thermal Science, 2021. 25(5): p. 3579-3594.
  • 43. Manualslib, https://www.manualslib.com/manual/ 1247577/Decagon-Devices-Kd2-Pro.html, 07.01.2023.
  • 44. Karaman, E. and O. Çolak, Eriyik biriktirme yönteminde farklı üretim parametrelerinin mekanik özelliklere etkisi, ALKÜ Fen Bilimleri Dergisi, 2019. 1(2): p. 90-99.
  • 45. Ngo, I. and C. Byon, Thermal conductivity of particle-filled polymers", Polymer Science Book Series, 2016. p. 554-565.
  • 46. Kovan, V., G. Altan and E.S. Topal, Effect of layer thickness and print orientation on strength of 3D printed and adhesively bonded single lap joints, Journal of Mechanical Science and Technology, 2017. 31: p. 2197-2201.
  • 47. Shubham, P., A. Sikidar, and T. Chand, The influence of layer thickness on mechanical properties of the 3D printed ABS polymer by fused deposition modeling in Key engineering materials, Trans Tech Publ, 2016. 706, p. 63-67.
  • 48. Tymrak, B., M. Kreiger and J.M. Pearce, Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions, Materials & Design, 2014. 58, p. 242-246.
  • 49. Liu, Z., Q. Lei, and S. Xing, Mechanical characteristics of wood, ceramic, metal and carbon fiber-based PLA composites fabricated by FDM, Journal of Materials Research and Technology, 8(5): p. 3741-3751.
  • 50. Hanon, M.M., J. Dobos and L. Zsidai, The influence of 3D printing process parameters on the mechanical performance of PLA polymer and its correlation with hardness, Procedia Manufacturing, 2021. 54: p. 244-249.
Year 2023, Volume: 7 Issue: 3, 146 - 156, 15.12.2023
https://doi.org/10.35860/iarej.1303538

Abstract

References

  • 1. Tiseo, I., Annual production of plastics worldwide from 1950 to 2020, Statisca, 2021. 11: p. 10-21.
  • 2. Da Costa, J.P., T. Rocha-Santos, and A.C. Duarte, The environmental impacts of plastics and micro-plastics use, waste and pollution: EU and national measures. EPRS: European Parliamentary Research Service, 19 Aug 2020, Belgium.
  • 3. Moetazedian, A., A. Gledall, X. Han, A. Ekinci, E. Mele, and V. V. Silberschmidt, Mechanical performance of 3D printed polylactide during degradation. Additive Manufacturing, 2021. 38: p. 101764.
  • 4. Patti, A., S. Acierno, G. Cicala, M. Zarrelli, and D. Acierno, Assessment of recycled PLA-based filament for 3D printing. Materials Proceedings, 2021. 7(1): p. 16-23.
  • 5. Garrison, T.F., A. Murawski, and R. L. Quirino, Bio-based polymers with potential for biodegradability, Polymers, 2016. 8(7): p. 262-271.
  • 6. Solomon, I.J., P. Sevvel, and J. Gunasekaran, A review on the various processing parameters in FDM, Materials Today: Proceedings, 2021. 37: p. 509-514.
  • 7. Aydin, M., B. Güler, and K. Çetinkaya, Dikey Ekstrüzyon (Filament) Sistemi Tasarim Ve Prototip İmalati, International Journal of 3D Printing Technologies and Digital Industry, 2018. 2(1), p. 1-10.
  • 8. Mirón, V., S. Ferrandiz, D. Juarez, and A. Mengual, Manufacturing and characterization of 3D printer filament using tailoring materials, Procedia Manufacturing, 2017. 13: p. 888-894.
  • 9. Tanabi, H. Investigation of the temperature effect on the mechanical properties of 3D printed composites, International Advanced Researches and Engineering Journal, 2021. 5 (2): p. 188-193.
  • 10. Shindé, S.L. and J. Goela, High thermal conductivity materials, Springer, 2006. 91: p. 167-198.
  • 11. Singh, R., G. S. Sandhu, R. Penna and I. Farina, "Investigations for thermal and electrical conductivity of ABS-graphene blended prototypes, Materials, 10(8): p. 881-898.
  • 12. Rumeysa, B. and M. Öksüz, Polimer Malzemelerin Isıl İletkenlik Özelikleri, https://www.plastik-ambalaj.com/en/plastic-packaging-article/3014-polimer-malzemelerin-is-l-iletkenlik-oezelikleri, Ocak 23 2022.
  • 13. Sandhu, S., Investigations for Development of ABS-Grephene Blended Feed Stock Filament for FDM Applications, PhD. Thesis, Guru Nanak Dev Engineering College Ludhiana, India, 2017.
  • 14. Kazmer, D., Three-dimensional printing of plastics, in Applied plastics engineering handbook, Processing, Materials, and Applications, 2017. p. 617-634.
  • 15. Wondu, E., Z.C. Lule, and J. Kim, Improvement of dielectric properties and thermal conductivity of TPU with alumina-encapsulated rGO, Polymer Testing, 2021. 102: p. 107322.
  • 16. Xiong, J., Z. Zheng, X. Qin, M. Li, H. Li, and X. Wang, The thermal and mechanical properties of a polyurethane/multi-walled carbon nanotube composite, Carbon, 2006. 44(13): p. 2701-2707.
  • 17. Ma, X.-Y. and W.-D. Zhang, Effects of flower-like ZnO nanowhiskers on the mechanical, thermal and antibacterial properties of waterborne polyurethane, Polymer Degradation and Stability, 2009. 94(7): p. 1103-1109.
  • 18. Kuan, H.-C., C. C-M. Ma, W-P. Chang, S-M. Yuen, H-H. Wu, and T-M. Lee. Synthesis, thermal, mechanical and rheological properties of multiwall carbon nanotube/waterborne polyurethane nanocomposite, Composites Science and Technology, 2005. 65(11-12): p. 1703-1710.
  • 19. Wondu, E., Z. Lule and J. Kim, Thermal conductivity and mechanical properties of thermoplastic polyurethane-/silane-modified Al2O3 composite fabricated via melt compounding, Polymers, 2019 11(7): p. 1103.
  • 20. Yuan, C., B. Duan, L. Li, B. Xie, M. Huang, and X. Luo, Thermal conductivity of polymer-based composites with magnetic aligned hexagonal boron nitride platelets, ACS applied materials & interfaces, 2015. 7(23): p. 13000-13006.
  • 21. Xie, B.-H., X. Huang, and G.-J. Zhang, "High thermal conductive polyvinyl alcohol composites with hexagonal boron nitride microplatelets as fillers", Composites Science and Technology, 2013. 85: p. 98-103.
  • 22. Ha, S.M., O. H. Kwon, Y. G. Oh, Y. S. Kim, J. C. Won, B. G. Kim, Y. Yoo, Thermally conductive polyamide 6/carbon filler composites based on a hybrid filler system, Science and technology of advanced materials, 2015. 16: p. 1-10.
  • 23. Choi, S.W., K. H. Yoon, and. S. S. Jeong, Morphology and thermal conductivity of polyacrylate composites containing aluminum/multi-walled carbon nanotubes, Composites Part A: Applied Science and Manufacturing, 2013. 45: p. 1-5.
  • 24. Yu, A., R. Ramesh, X. Sun, E. Bekyarova, M.E. Itkis, and R.C. Haddon, Enhanced thermal conductivity in a hybrid graphite nanoplatelet–carbon nanotube filler for epoxy composites, Advanced Materials, 2008. 20(24): p. 4740-4744.
  • 25. Incorporated. P.S. 3 Types of Plastic Used in 3D Printing, https://www.polymersolutions.com/blog/plastic-in-3d-printing/, Feb 12, 2023.
  • 26. Kyutoku, H., N. Maeda, H. Sakamoto, and K. Yamada, Effect of surface treatment of cellulose fiber (CF) on durability of PLA/CF bio-composites, Carbohydrate polymers, 2019. 203: p. 95-102.
  • 27. Ultimaker. Ultimaker Tough PLA TDS. https://support.makerbot.com/s/article/1667411002379, 17 Feb 2023.
  • 28. Ayrilmis, N., M. Kariz, J.H. Kwon, and M. K. Kuzman, Effect of printing layer thickness on water absorption and mechanical properties of 3D-printed wood/PLA composite materials, The International Journal of Advanced Manufacturing Technology, 2019. 102: p. 2195-2200.
  • 29. Guessasma, S., S. Belhabib, and H. Nouri, Microstructure and mechanical performance of 3D printed wood-PLA/PHA using fused deposition modelling: Effect of printing temperature, Polymers, 2019. 11(11): p. 1778.
  • 30. Magri, A.E., K. E. Mabrouk, and M. Touhami, Mechanical properties of CF-reinforced PLA parts manufactured by fused deposition modeling, Journal of Thermoplastic Composite Materials, 2021. 34(5): p. 581-595.
  • 31. Abbott, A., G.P. Tandom, R.L. Bradford, R.L. Koerner, and J.W. Baur, Process-structure-property effects on ABS bond strength in fused filament fabrication, Additive Manufacturing, 2018. 19: p. 29-38.
  • 32. Petrović, Z.S. and J. Ferguson, Polyurethane elastomers", Progress in Polymer Science, 1991. 16(5): p. 695-836.
  • 33. Ultimaker. Ultimaker PLA TDS, https://support.makerbot.com/s/article/1667410781972, 11 Ekim 2022.
  • 34. eSUN, PLA+, https://www.esun3d.com/uploads/ eSUN_PLA+-Filament_TDS_V4.0.pdf, 22 Ocak 2023.
  • 35. Filameon. PLA-CF 15 Filament, https://www.filameon.com/urun/filameon-pla-cf-15-filament/#%20, 06 Eylül 202.
  • 36. Filameon. PLA Wood, https://www.filameon.com/ urun/filameon-pla-wood-filament/, 05 Kasım 2022.
  • 37. eSUN, ABS+, https://www.esun3d.com/ uploads/eSUN_ABS+-Filament_TDS_V4.0.pdf, 13 Aralık 2022.
  • 38. Filament, S. TPU 92A, https://savafilament.com/standart-92a, 11 April 2022.
  • 39. Nuñez, P., A. Rivas, E.G. Plaza, E. Beamud, and A.S. Lobera, Dimensional and surface texture characterization in fused deposition modelling (FDM) with ABS plus, Procedia Engineering, 2015. 132: 856-863.
  • 40. Şentürk, B., K. Çetin, S.N. Ürküt, N. Anaç, N. and O. Koçar, Jig design and manufacturing for adhesive thickness control in adhesive joints, Journal of Materials and Manufacturing, 2022. 1(2): p. 17-23.
  • 41. Qi, H., K. Joyce, and M. Boyce, Durometer hardness and the stress-strain behavior of elastomeric materials, Rubber chemistry and technology, 2003. 76(2): p. 419-435.
  • 42. Topuz, A., B. Erdogan and O. Aycan, Determination and measurement of some thermophysical properties of nanofluids and comparison with literature studies, Thermal Science, 2021. 25(5): p. 3579-3594.
  • 43. Manualslib, https://www.manualslib.com/manual/ 1247577/Decagon-Devices-Kd2-Pro.html, 07.01.2023.
  • 44. Karaman, E. and O. Çolak, Eriyik biriktirme yönteminde farklı üretim parametrelerinin mekanik özelliklere etkisi, ALKÜ Fen Bilimleri Dergisi, 2019. 1(2): p. 90-99.
  • 45. Ngo, I. and C. Byon, Thermal conductivity of particle-filled polymers", Polymer Science Book Series, 2016. p. 554-565.
  • 46. Kovan, V., G. Altan and E.S. Topal, Effect of layer thickness and print orientation on strength of 3D printed and adhesively bonded single lap joints, Journal of Mechanical Science and Technology, 2017. 31: p. 2197-2201.
  • 47. Shubham, P., A. Sikidar, and T. Chand, The influence of layer thickness on mechanical properties of the 3D printed ABS polymer by fused deposition modeling in Key engineering materials, Trans Tech Publ, 2016. 706, p. 63-67.
  • 48. Tymrak, B., M. Kreiger and J.M. Pearce, Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions, Materials & Design, 2014. 58, p. 242-246.
  • 49. Liu, Z., Q. Lei, and S. Xing, Mechanical characteristics of wood, ceramic, metal and carbon fiber-based PLA composites fabricated by FDM, Journal of Materials Research and Technology, 8(5): p. 3741-3751.
  • 50. Hanon, M.M., J. Dobos and L. Zsidai, The influence of 3D printing process parameters on the mechanical performance of PLA polymer and its correlation with hardness, Procedia Manufacturing, 2021. 54: p. 244-249.
There are 50 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Articles
Authors

Furkan Parmaksız 0000-0001-7002-9157

Nergizhan Anaç 0000-0001-6738-9741

Oğuz Koçar 0000-0002-1928-4301

Beytullah Erdogan 0000-0002-6120-9196

Publication Date December 15, 2023
Submission Date May 27, 2023
Acceptance Date October 4, 2023
Published in Issue Year 2023 Volume: 7 Issue: 3

Cite

APA Parmaksız, F., Anaç, N., Koçar, O., Erdogan, B. (2023). Investigation of mechanical properties and thermal conductivity coefficients of 3D printer materials. International Advanced Researches and Engineering Journal, 7(3), 146-156. https://doi.org/10.35860/iarej.1303538
AMA Parmaksız F, Anaç N, Koçar O, Erdogan B. Investigation of mechanical properties and thermal conductivity coefficients of 3D printer materials. Int. Adv. Res. Eng. J. December 2023;7(3):146-156. doi:10.35860/iarej.1303538
Chicago Parmaksız, Furkan, Nergizhan Anaç, Oğuz Koçar, and Beytullah Erdogan. “Investigation of Mechanical Properties and Thermal Conductivity Coefficients of 3D Printer Materials”. International Advanced Researches and Engineering Journal 7, no. 3 (December 2023): 146-56. https://doi.org/10.35860/iarej.1303538.
EndNote Parmaksız F, Anaç N, Koçar O, Erdogan B (December 1, 2023) Investigation of mechanical properties and thermal conductivity coefficients of 3D printer materials. International Advanced Researches and Engineering Journal 7 3 146–156.
IEEE F. Parmaksız, N. Anaç, O. Koçar, and B. Erdogan, “Investigation of mechanical properties and thermal conductivity coefficients of 3D printer materials”, Int. Adv. Res. Eng. J., vol. 7, no. 3, pp. 146–156, 2023, doi: 10.35860/iarej.1303538.
ISNAD Parmaksız, Furkan et al. “Investigation of Mechanical Properties and Thermal Conductivity Coefficients of 3D Printer Materials”. International Advanced Researches and Engineering Journal 7/3 (December 2023), 146-156. https://doi.org/10.35860/iarej.1303538.
JAMA Parmaksız F, Anaç N, Koçar O, Erdogan B. Investigation of mechanical properties and thermal conductivity coefficients of 3D printer materials. Int. Adv. Res. Eng. J. 2023;7:146–156.
MLA Parmaksız, Furkan et al. “Investigation of Mechanical Properties and Thermal Conductivity Coefficients of 3D Printer Materials”. International Advanced Researches and Engineering Journal, vol. 7, no. 3, 2023, pp. 146-5, doi:10.35860/iarej.1303538.
Vancouver Parmaksız F, Anaç N, Koçar O, Erdogan B. Investigation of mechanical properties and thermal conductivity coefficients of 3D printer materials. Int. Adv. Res. Eng. J. 2023;7(3):146-5.



Creative Commons License

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.