Research Article
BibTex RIS Cite

Constructing a descriptive sensory panel for tactile comfort evaluations: Effect of demographic variables and panel size

Year 2024, Volume: 8 Issue: 1, 51 - 60, 20.04.2024
https://doi.org/10.35860/iarej.1380044

Abstract

Sensory tests are essential components of comfort studies, and constructing a sensory panel is a crucial step of this process. In the current study, Total Hand (TH) scores of 41 woven fabrics were determined by assessors having different demographic characteristics. Assessment accuracy and inter-rater reliability of panel members were investigated via correlation and concordance analyses. Effect of demographic variables (gender, age, and level of expertise), panel size and sampling method on sensory evaluation results were discussed based on statistical measures. Findings of the study certified that sensory evaluations carried out with female panel members represent overall TH scores more successfully than males and assessment of female participants are in a better agreement with each other. It was also observed that assessment accuracy and inter-rater agreement improved with increasing levels of expertise. Investigations revealed that small panel sizes were sufficient to accurately evaluate fabric hand. Therefore, it was concluded that increasing the number of participants may not necessarily provide further information on comfort preferences and perceptions of potential customers.

Thanks

The authors would like to thank the assessors participating in the sensory evaluations.

References

  • 1. Ciesielska-Wróbel I.L., and L. Van Langenhove, The hand of textiles – definitions, achievements, perspectives – a review, Textile Research Journal, 2012. 82(14): p. 1457-1468.
  • 2. Liao X., J. Hu, Y. Li, Q. Li, and X. Wu, A review on fabric smoothness-roughness sensation studies, Journal of Fiber Bioengineering & Informatics, 2011. 4(2): p. 105-114.
  • 3. Hu X., Z. Chen, and F. Sun, Digitization of fabric comfort: a multidimensional evaluation strategy to human perceptions of sensorial, thermal and acoustic comfort in clothing, International Journal of Clothing Science and Technology, 2023. 35(1): p. 162-175.
  • 4. Liu L., L. Wei, and F. Sun, Simultaneous-integrated evaluation of mechanical–thermal sensory attributes of woven fabrics in considering practical wearing states, Textile Research Journal, 2021. 91(23-24): p. 2872-2881.
  • 5. Liao X., Y. Li, J. Hu, X. Wu, and Q. Li, A simultaneous measurement method to characterize touch properties of textile materials, Fibers and Polymers, 2014. 15(7): p. 1548-1559.
  • 6. Wang H., T.J. Mahar, and R. Hall, Prediction of the handle characteristics of lightweight next-to-skin knitted fabrics using a fabric extraction technique, Journal of the Textile Institute, 2012. 103(7): p. 691-697.
  • 7. Strazdiene E., and M. Gutauskas, New method for the objective evaluation of textile hand, Fibres and Textiles in Eastern Europe, 2005. 2(50): p. 35-38.
  • 8. Kim J.O., and B.L. Slaten, Objective evaluation of fabric hand: Part I: Relationships of fabric hand by the extraction method and related physical and surface properties, Textile Research Journal, 1999. 69(1): p. 59-67.
  • 9. Kawabata S., and M. Niwa, Clothing engineering based on objective measurement technology, International Journal of Clothing Science and Technology, 1998. 10(3/4): p. 263-272.
  • 10. ISO 6658, Sensory analysis - Methodology - General guidance, International Organization for Standardization, 2017.
  • 11. ISO 5495, Sensory analysis - Methodology - Paired comparison test, International Organization for Standardization, 2005.
  • 12. ISO 10399, Sensory analysis - Methodology - Duo-trio test, International Organization for Standardization, 2017.
  • 13. ISO 4120, Sensory analysis - Methodology - Triangle test, International Organization for Standardization, 2021.
  • 14. AATCC EP5, Evaluation procedure for fabric hand value, American Association of Textile Chemists and Colorists Committee, 2020.
  • 15. ISO 8586, Sensory analysis - Selection and training of sensory assessors, International Organization for Standardization, 2023.
  • 16. Stratton SJ. Population Research: Convenience Sampling Strategies. Prehospital and Disaster Medicine, 2021. 36(4): p. 373-374.
  • 17. Kolb B., Choosing participants for qualitative research. In: Marketing research, London: SAGE Publications Ltd., 2008.
  • 18. ASTM E3000-18, Standard guide for measuring and tracking performance of assessors on a descriptive sensory panel, American Society for Testing and Materials, 2018.
  • 19. Dhingra R.C., T.J. Mahar, R. Postle, V.B. Gupta, S. Kawabata, M. Niwa, and G.A. Carnaby, The objective specification of the handle of men’s suiting materials: A comparison of fabric handle assessments in India, Australia, Japan and New Zealand, Indian Journal of Textile Research, 1983. 8: p. 9-15.
  • 20. Kim H., and G. Winakor, Fabric hand as perceived by U.S. and Korean males and females. Clothing and Textile Research Journal, 1996. 14(2): p. 133-144.
  • 21. Speijers J., J. H. Stanton, G.R. Naylor, P. Ramankutty, and D. Tester, Skin comfort of base layer wool garments. Part 3: The effect of ethnicity on perceptions of comfort using Chinese and Australian wearers, Textile Research Journal, 2015. 85(11): p. 1167-1180.
  • 22. Keefe F.J., M.A. Lumley, A.L. Buffington, J.W. Carson, J.L. Studts, C.L. Edwards, D.J. Macklem, A.K. Aspnes, L. Fox, and D. Steffey, Changing face of pain: Evolution of pain research in psychosomatic medicine, Psychosomatic Medicine. 2002. 64(6): p. 921-938.
  • 23. Bacci L., F. Camilli, S. Drago, M. Magli, E. Vagnoni, A. Mauro, and S. Predieri, Sensory evaluation and instrumental measurements to determine tactile properties of wool fabrics, Textile Research Journal, 2012. 82(14): p. 1430-1441.
  • 24. Xue Z., X. Zeng, L. Koehl, and Y. Chen, Extracting fabric hand information from visual representations of flared skirts, Textile Research Journal, 2014. 84(3): p. 246-266.
  • 25. Suzuki Y., and S. Sukigara, Mechanical and tactile properties of plain knitted fabrics produced from rayon Vortex yarns, Textile Research Journal, 2013. 83(7): p. 740-751.
  • 26. Hui C.L., T.W. Lau, S.F. Ng, and K.C.C. Chan. Neural network prediction of human psychological perceptions of fabric hand, Textile Research Journal, 2004. 74(5): p. 375-383.
  • 27. Temel M., A.A. Johnson, and A.B. Lloyd, Evaluating the repeatability of friction coefficient measurements and tactile perceptions in skin–textile interactions across body regions, Tribology Letters, 2022. 2022(70): 23.
  • 28. Jiao J., X. Hu, Y. Huang, J. Hu, C. Hsing, Z. Lai, C. Wong, and J.H. Xin, Neuro-perceptive discrimination on fabric tactile stimulation by Electroencephalographic (EEG) spectra, PLoS One, 2020. 15(10): e0241378.
  • 29. McGregor B.A., M. Naebe, H. Wang, D. Tester, and J. Rowe, Relationships between wearer assessment and the instrumental measurement of the handle and prickle of knitted wool fabrics, Textile Research Journal, 2015. 85(11): p. 1140-1152.
  • 30. Ryu H.S., and E. Kyung, Preference and subjective evaluation of washed fabric hand using conjoint analysis, Textile Research Journal, 2010. 80(20): p. 2167-2175.
  • 31. Yokura H., and M. Niwa, Objective hand measurement of nonwoven fabrics used for the top sheets of disposable diapers, Textile Research Journal, 2003. 73(8): p. 705-712.
  • 32. Stanton J.H., J. Speijers, G.R.S. Naylor, S. Pieruzzini, J. Beilby, E. Barsden, and A. Clarke, Skin comfort of base layer knitted garments. Part 1: Description and evaluation of wearer test protocol, Textile Research Journal, 2014. 84(13): p. 1385-1399.
  • 33. Wilfling J., G. Havenith, M. Raccuglia, and S. Hodder, Can you see the feel? The absence of tactile cues in clothing e-commerce impairs consumer decision making, International Journal of Fashion Design, Technology and Education, 2023. 16(2): p. 224-233.
  • 34. Boles D.B., and S.M. Givens, Laterality and sex differences in tactile detection and two-point thresholds modified by body surface area and body fat ratio, Somatosensory and Motor Research, 2011. 28(3-4): p. 102–109.
  • 35. Chen C.C., G.K. Essick, D.G. Kelly, M.G. Young, J.M. Nestor, and B. Masse, Gender-, side-, and site-dependent variations in human perioral spatial resolution, Archives of Oral Biology, 1995. 40(6): p. 539-548.
  • 36. Komiyama O., M. Kawara, and A. De Laat, Ethnic differences regarding tactile and pain thresholds in the trigeminal region, The Journal of Pain, 2007. 8(4): p. 363-369.
  • 37. Wohlert A.B., Tactile perception of spatial stimuli on the lip surface by young and older adults, Journal of Speech, Language and Hearing Research, 1996. 39(6): p. 1191-1198.
  • 38. Roh E.K., K.W. Oh, and S.H. Kim, Effect of raising cycles on mechanical, comfort, and hand properties of artificial suede, Textile Research Journal, 2014. 84(18): p. 1995-2005.
  • 39. Asad R.A., W. Yu, Q. Siddiqui, M. Vincent, and Q. Wang, Subjective evaluations of fabric-evoked prickle using the unidimensional rating scale from different body areas, Textile Research Journal, 2016. 86(4): p. 350-364.
  • 40. Harpa R., C. Piroi, I. Cristian, E. Visileanu, and M. Blaga, Sensory analysis of textiles: case study of an assortment of stretch denim fabrics, Industria Textila, 2019. 70(4): p. 358-365.
  • 41. Ye T., L. Cui, C. Zhang, and Y. Qiu, Electroneurophysiological responses to fabric-skin dynamic contact with different fabrics among different types of people, Textile Research Journal, 2023. 93(17-18): p. 4140-4152.
  • 42. Musa A.B.H., B. Malengier, S. Vasile, and L. Van Langenhove, A comprehensive approach for human hand evaluation of split or large set of fabrics, Textile Research Journal, 2019. 89(19-20): p. 4239-4252.
  • 43. Xue Z., X. Zeng, L. Koehl, and L. Shen, Consistency and reliability of untrained consumers’ perceptions of fabric hand of men’s suiting, Textile Research Journal, 2016. 86(13): p. 1425-1442.
  • 44. Ritchie H., and M. Roser, [cited 2023 23 October] Available from: https://ourworldindata.org/age-structure
  • 45. Hanada M., Tactile dimensions of fabrics expressed by Japanese onomatopoeic words and phonemic features related to fabric luxuriousness and pleasantness, Frontiers in Language Sciences, 2023. 2: 1075055.
  • 46. Wang Q., Y. Tao, Z. Zhang, J. Yuan, Z. Ding, Z. Jiang, Z. Jia, and J. Wang, Representations of fabric hand attributes in the cerebral cortices based on the Automated Anatomical Labeling atlas, Textile Research Journal, 2019. 89(18): p. 3768-3778.
  • 47. Tang W., S. Zhang, C. Yu, H. Zhu, S. Chen, and Y. Peng, Tactile perception of textile fabrics based on friction and brain activation, Friction, 2023. 11(7): p. 1320-1333.
  • 48. Vasile S., B. Malengier, A. De Raeve, and F. Deruyck, Influence of selected production parameters on the hand of mattress knitted fabrics assessed by the Fabric Touch Tester. Textile Research Journal, 2019. 89(1): p. 98-112.
  • 49. Uren N., and A. Okur, Analysis and improvement of tactile comfort and low-stress mechanical properties of denim fabrics, Textile Research Journal, 2019. 89(23-24): p. 4842-4857.
  • 50. Shao Y., Y. Sun, D. Zheng, G. Liu, Z. Du, J. Liu, and M. Wang, Tactile comfort characterization of knitted fabrics based on the ring-shaped style tester, Textile Research Journal, 2021. 91(7-8): p. 766-777.
  • 51. Sun F., Z. Du, and M. Naebe, Determination of model parameters for predicting handle characteristics of wool-rich suiting woven fabrics based on the Wool HandleMeter and KES-F. Journal of the Textile Institute, 2018. 109(2): p. 147-159.
  • 52. Sun F., Z. Du, D. Zheng, X. Hu, Y. Sun, and W. Gao, In-situ characterization of handle characteristics of suiting woven fabrics by a simultaneous measurement method, Textile Research Journal, 2019. 89(13): p. 2522-2531.
  • 53. Mason M., Sample size and saturation in PhD studies using qualitative interviews, Forum Qualitative Sozialforschung / Forum: Qualitative Social Research, 2010. 11(3): 4902282.
  • 54. Nascimento L.C.N., T.V. Souza, I.C.S. Oliveira, J.R.M.M. Moraes, R.C.B. Aguiar, and L.F. Silva, Theoretical saturation in qualitative research: An experience report in interview with schoolchildren. Revista Brasileira de Enfermagem, 2018. 71(1): p. 228-23.
Year 2024, Volume: 8 Issue: 1, 51 - 60, 20.04.2024
https://doi.org/10.35860/iarej.1380044

Abstract

References

  • 1. Ciesielska-Wróbel I.L., and L. Van Langenhove, The hand of textiles – definitions, achievements, perspectives – a review, Textile Research Journal, 2012. 82(14): p. 1457-1468.
  • 2. Liao X., J. Hu, Y. Li, Q. Li, and X. Wu, A review on fabric smoothness-roughness sensation studies, Journal of Fiber Bioengineering & Informatics, 2011. 4(2): p. 105-114.
  • 3. Hu X., Z. Chen, and F. Sun, Digitization of fabric comfort: a multidimensional evaluation strategy to human perceptions of sensorial, thermal and acoustic comfort in clothing, International Journal of Clothing Science and Technology, 2023. 35(1): p. 162-175.
  • 4. Liu L., L. Wei, and F. Sun, Simultaneous-integrated evaluation of mechanical–thermal sensory attributes of woven fabrics in considering practical wearing states, Textile Research Journal, 2021. 91(23-24): p. 2872-2881.
  • 5. Liao X., Y. Li, J. Hu, X. Wu, and Q. Li, A simultaneous measurement method to characterize touch properties of textile materials, Fibers and Polymers, 2014. 15(7): p. 1548-1559.
  • 6. Wang H., T.J. Mahar, and R. Hall, Prediction of the handle characteristics of lightweight next-to-skin knitted fabrics using a fabric extraction technique, Journal of the Textile Institute, 2012. 103(7): p. 691-697.
  • 7. Strazdiene E., and M. Gutauskas, New method for the objective evaluation of textile hand, Fibres and Textiles in Eastern Europe, 2005. 2(50): p. 35-38.
  • 8. Kim J.O., and B.L. Slaten, Objective evaluation of fabric hand: Part I: Relationships of fabric hand by the extraction method and related physical and surface properties, Textile Research Journal, 1999. 69(1): p. 59-67.
  • 9. Kawabata S., and M. Niwa, Clothing engineering based on objective measurement technology, International Journal of Clothing Science and Technology, 1998. 10(3/4): p. 263-272.
  • 10. ISO 6658, Sensory analysis - Methodology - General guidance, International Organization for Standardization, 2017.
  • 11. ISO 5495, Sensory analysis - Methodology - Paired comparison test, International Organization for Standardization, 2005.
  • 12. ISO 10399, Sensory analysis - Methodology - Duo-trio test, International Organization for Standardization, 2017.
  • 13. ISO 4120, Sensory analysis - Methodology - Triangle test, International Organization for Standardization, 2021.
  • 14. AATCC EP5, Evaluation procedure for fabric hand value, American Association of Textile Chemists and Colorists Committee, 2020.
  • 15. ISO 8586, Sensory analysis - Selection and training of sensory assessors, International Organization for Standardization, 2023.
  • 16. Stratton SJ. Population Research: Convenience Sampling Strategies. Prehospital and Disaster Medicine, 2021. 36(4): p. 373-374.
  • 17. Kolb B., Choosing participants for qualitative research. In: Marketing research, London: SAGE Publications Ltd., 2008.
  • 18. ASTM E3000-18, Standard guide for measuring and tracking performance of assessors on a descriptive sensory panel, American Society for Testing and Materials, 2018.
  • 19. Dhingra R.C., T.J. Mahar, R. Postle, V.B. Gupta, S. Kawabata, M. Niwa, and G.A. Carnaby, The objective specification of the handle of men’s suiting materials: A comparison of fabric handle assessments in India, Australia, Japan and New Zealand, Indian Journal of Textile Research, 1983. 8: p. 9-15.
  • 20. Kim H., and G. Winakor, Fabric hand as perceived by U.S. and Korean males and females. Clothing and Textile Research Journal, 1996. 14(2): p. 133-144.
  • 21. Speijers J., J. H. Stanton, G.R. Naylor, P. Ramankutty, and D. Tester, Skin comfort of base layer wool garments. Part 3: The effect of ethnicity on perceptions of comfort using Chinese and Australian wearers, Textile Research Journal, 2015. 85(11): p. 1167-1180.
  • 22. Keefe F.J., M.A. Lumley, A.L. Buffington, J.W. Carson, J.L. Studts, C.L. Edwards, D.J. Macklem, A.K. Aspnes, L. Fox, and D. Steffey, Changing face of pain: Evolution of pain research in psychosomatic medicine, Psychosomatic Medicine. 2002. 64(6): p. 921-938.
  • 23. Bacci L., F. Camilli, S. Drago, M. Magli, E. Vagnoni, A. Mauro, and S. Predieri, Sensory evaluation and instrumental measurements to determine tactile properties of wool fabrics, Textile Research Journal, 2012. 82(14): p. 1430-1441.
  • 24. Xue Z., X. Zeng, L. Koehl, and Y. Chen, Extracting fabric hand information from visual representations of flared skirts, Textile Research Journal, 2014. 84(3): p. 246-266.
  • 25. Suzuki Y., and S. Sukigara, Mechanical and tactile properties of plain knitted fabrics produced from rayon Vortex yarns, Textile Research Journal, 2013. 83(7): p. 740-751.
  • 26. Hui C.L., T.W. Lau, S.F. Ng, and K.C.C. Chan. Neural network prediction of human psychological perceptions of fabric hand, Textile Research Journal, 2004. 74(5): p. 375-383.
  • 27. Temel M., A.A. Johnson, and A.B. Lloyd, Evaluating the repeatability of friction coefficient measurements and tactile perceptions in skin–textile interactions across body regions, Tribology Letters, 2022. 2022(70): 23.
  • 28. Jiao J., X. Hu, Y. Huang, J. Hu, C. Hsing, Z. Lai, C. Wong, and J.H. Xin, Neuro-perceptive discrimination on fabric tactile stimulation by Electroencephalographic (EEG) spectra, PLoS One, 2020. 15(10): e0241378.
  • 29. McGregor B.A., M. Naebe, H. Wang, D. Tester, and J. Rowe, Relationships between wearer assessment and the instrumental measurement of the handle and prickle of knitted wool fabrics, Textile Research Journal, 2015. 85(11): p. 1140-1152.
  • 30. Ryu H.S., and E. Kyung, Preference and subjective evaluation of washed fabric hand using conjoint analysis, Textile Research Journal, 2010. 80(20): p. 2167-2175.
  • 31. Yokura H., and M. Niwa, Objective hand measurement of nonwoven fabrics used for the top sheets of disposable diapers, Textile Research Journal, 2003. 73(8): p. 705-712.
  • 32. Stanton J.H., J. Speijers, G.R.S. Naylor, S. Pieruzzini, J. Beilby, E. Barsden, and A. Clarke, Skin comfort of base layer knitted garments. Part 1: Description and evaluation of wearer test protocol, Textile Research Journal, 2014. 84(13): p. 1385-1399.
  • 33. Wilfling J., G. Havenith, M. Raccuglia, and S. Hodder, Can you see the feel? The absence of tactile cues in clothing e-commerce impairs consumer decision making, International Journal of Fashion Design, Technology and Education, 2023. 16(2): p. 224-233.
  • 34. Boles D.B., and S.M. Givens, Laterality and sex differences in tactile detection and two-point thresholds modified by body surface area and body fat ratio, Somatosensory and Motor Research, 2011. 28(3-4): p. 102–109.
  • 35. Chen C.C., G.K. Essick, D.G. Kelly, M.G. Young, J.M. Nestor, and B. Masse, Gender-, side-, and site-dependent variations in human perioral spatial resolution, Archives of Oral Biology, 1995. 40(6): p. 539-548.
  • 36. Komiyama O., M. Kawara, and A. De Laat, Ethnic differences regarding tactile and pain thresholds in the trigeminal region, The Journal of Pain, 2007. 8(4): p. 363-369.
  • 37. Wohlert A.B., Tactile perception of spatial stimuli on the lip surface by young and older adults, Journal of Speech, Language and Hearing Research, 1996. 39(6): p. 1191-1198.
  • 38. Roh E.K., K.W. Oh, and S.H. Kim, Effect of raising cycles on mechanical, comfort, and hand properties of artificial suede, Textile Research Journal, 2014. 84(18): p. 1995-2005.
  • 39. Asad R.A., W. Yu, Q. Siddiqui, M. Vincent, and Q. Wang, Subjective evaluations of fabric-evoked prickle using the unidimensional rating scale from different body areas, Textile Research Journal, 2016. 86(4): p. 350-364.
  • 40. Harpa R., C. Piroi, I. Cristian, E. Visileanu, and M. Blaga, Sensory analysis of textiles: case study of an assortment of stretch denim fabrics, Industria Textila, 2019. 70(4): p. 358-365.
  • 41. Ye T., L. Cui, C. Zhang, and Y. Qiu, Electroneurophysiological responses to fabric-skin dynamic contact with different fabrics among different types of people, Textile Research Journal, 2023. 93(17-18): p. 4140-4152.
  • 42. Musa A.B.H., B. Malengier, S. Vasile, and L. Van Langenhove, A comprehensive approach for human hand evaluation of split or large set of fabrics, Textile Research Journal, 2019. 89(19-20): p. 4239-4252.
  • 43. Xue Z., X. Zeng, L. Koehl, and L. Shen, Consistency and reliability of untrained consumers’ perceptions of fabric hand of men’s suiting, Textile Research Journal, 2016. 86(13): p. 1425-1442.
  • 44. Ritchie H., and M. Roser, [cited 2023 23 October] Available from: https://ourworldindata.org/age-structure
  • 45. Hanada M., Tactile dimensions of fabrics expressed by Japanese onomatopoeic words and phonemic features related to fabric luxuriousness and pleasantness, Frontiers in Language Sciences, 2023. 2: 1075055.
  • 46. Wang Q., Y. Tao, Z. Zhang, J. Yuan, Z. Ding, Z. Jiang, Z. Jia, and J. Wang, Representations of fabric hand attributes in the cerebral cortices based on the Automated Anatomical Labeling atlas, Textile Research Journal, 2019. 89(18): p. 3768-3778.
  • 47. Tang W., S. Zhang, C. Yu, H. Zhu, S. Chen, and Y. Peng, Tactile perception of textile fabrics based on friction and brain activation, Friction, 2023. 11(7): p. 1320-1333.
  • 48. Vasile S., B. Malengier, A. De Raeve, and F. Deruyck, Influence of selected production parameters on the hand of mattress knitted fabrics assessed by the Fabric Touch Tester. Textile Research Journal, 2019. 89(1): p. 98-112.
  • 49. Uren N., and A. Okur, Analysis and improvement of tactile comfort and low-stress mechanical properties of denim fabrics, Textile Research Journal, 2019. 89(23-24): p. 4842-4857.
  • 50. Shao Y., Y. Sun, D. Zheng, G. Liu, Z. Du, J. Liu, and M. Wang, Tactile comfort characterization of knitted fabrics based on the ring-shaped style tester, Textile Research Journal, 2021. 91(7-8): p. 766-777.
  • 51. Sun F., Z. Du, and M. Naebe, Determination of model parameters for predicting handle characteristics of wool-rich suiting woven fabrics based on the Wool HandleMeter and KES-F. Journal of the Textile Institute, 2018. 109(2): p. 147-159.
  • 52. Sun F., Z. Du, D. Zheng, X. Hu, Y. Sun, and W. Gao, In-situ characterization of handle characteristics of suiting woven fabrics by a simultaneous measurement method, Textile Research Journal, 2019. 89(13): p. 2522-2531.
  • 53. Mason M., Sample size and saturation in PhD studies using qualitative interviews, Forum Qualitative Sozialforschung / Forum: Qualitative Social Research, 2010. 11(3): 4902282.
  • 54. Nascimento L.C.N., T.V. Souza, I.C.S. Oliveira, J.R.M.M. Moraes, R.C.B. Aguiar, and L.F. Silva, Theoretical saturation in qualitative research: An experience report in interview with schoolchildren. Revista Brasileira de Enfermagem, 2018. 71(1): p. 228-23.
There are 54 citations in total.

Details

Primary Language English
Subjects Textile Technology, Textile Sciences and Engineering (Other)
Journal Section Research Articles
Authors

Nazlı Üren 0000-0003-4487-7800

Early Pub Date June 5, 2024
Publication Date April 20, 2024
Submission Date October 24, 2023
Acceptance Date March 14, 2024
Published in Issue Year 2024 Volume: 8 Issue: 1

Cite

APA Üren, N. (2024). Constructing a descriptive sensory panel for tactile comfort evaluations: Effect of demographic variables and panel size. International Advanced Researches and Engineering Journal, 8(1), 51-60. https://doi.org/10.35860/iarej.1380044
AMA Üren N. Constructing a descriptive sensory panel for tactile comfort evaluations: Effect of demographic variables and panel size. Int. Adv. Res. Eng. J. April 2024;8(1):51-60. doi:10.35860/iarej.1380044
Chicago Üren, Nazlı. “Constructing a Descriptive Sensory Panel for Tactile Comfort Evaluations: Effect of Demographic Variables and Panel Size”. International Advanced Researches and Engineering Journal 8, no. 1 (April 2024): 51-60. https://doi.org/10.35860/iarej.1380044.
EndNote Üren N (April 1, 2024) Constructing a descriptive sensory panel for tactile comfort evaluations: Effect of demographic variables and panel size. International Advanced Researches and Engineering Journal 8 1 51–60.
IEEE N. Üren, “Constructing a descriptive sensory panel for tactile comfort evaluations: Effect of demographic variables and panel size”, Int. Adv. Res. Eng. J., vol. 8, no. 1, pp. 51–60, 2024, doi: 10.35860/iarej.1380044.
ISNAD Üren, Nazlı. “Constructing a Descriptive Sensory Panel for Tactile Comfort Evaluations: Effect of Demographic Variables and Panel Size”. International Advanced Researches and Engineering Journal 8/1 (April 2024), 51-60. https://doi.org/10.35860/iarej.1380044.
JAMA Üren N. Constructing a descriptive sensory panel for tactile comfort evaluations: Effect of demographic variables and panel size. Int. Adv. Res. Eng. J. 2024;8:51–60.
MLA Üren, Nazlı. “Constructing a Descriptive Sensory Panel for Tactile Comfort Evaluations: Effect of Demographic Variables and Panel Size”. International Advanced Researches and Engineering Journal, vol. 8, no. 1, 2024, pp. 51-60, doi:10.35860/iarej.1380044.
Vancouver Üren N. Constructing a descriptive sensory panel for tactile comfort evaluations: Effect of demographic variables and panel size. Int. Adv. Res. Eng. J. 2024;8(1):51-60.



Creative Commons License

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.