Research Article
BibTex RIS Cite

Simulation of fuzzy logic and PI control methods on a bridgeless isolated SEPIC converter for electric vehicle chargers

Year 2024, Volume: 8 Issue: 3, 141 - 153
https://doi.org/10.35860/iarej.1501059

Abstract

Studies in literature and the increasing trend of electrification show that electric vehicles (EVs) will become more widespread in the future. However, the growing demand for EV chargers causes an overload on the grid. Furthermore, EV chargers generate power factor distortion and harmonics, which contaminate the grid and lower the quality of power. Therefore, power factor correction (PFC) is applied by EV chargers to mitigate the harmonics. As defined in the IEC 61000-3-2 standard, the total harmonic distortion (THD) shall be less than 5%. In this study, a better PFC operation is achieved with the proposed bridgeless isolated single ended primary inductor converter (BL SEPIC) topology as an EV charger instead of conventional converter topologies that have diode bridge rectifiers (DBR). Also, the study has better THD outputs as compared with the similar bridgeless (BL) topologies in literature thanks to the simulated control methods of the proportion-integration (PI) and fuzzy control. Moreover, these control methods are compared with each other in terms of THD suppression performance, stability, robustness, and computational effort. The results showed that the fuzzy controller has advantages of stability and robustness against the transient conditions, input voltages and load changes for THD suppression while the PI controller has better THD results only for steady state operation with nominal input voltage and full load conditions. The implemented PI and fuzzy controllers are simulated in a MATLAB Simulink environment.

References

  • 1. Drobnič, K., G. Grandi, M. Hammami, R. Mandrioli, A. Viatkin, and M. Vujacic, A ripple-free dc output current fast charger for electric vehicles based on grid-tied modular three-phase interleaved converters. In 2018 International symposium on industrial electronics (INDEL), 2018. p.1-7.
  • 2. Ajanovic, A., and R. Haas, Economic and environmental prospects for battery electric‐and fuel cell vehicles: a review. Fuel cells, (2019). 19(5): p.515-529.
  • 3. Rahman, S., I. A. Khan, and M. H. Amini, A review on impact analysis of electric vehicle charging on power distribution systems. In 2020 2nd International Conference on Smart Power & Internet Energy Systems (SPIES), IEEE, 2020, p. 420-425.
  • 4. Koç, M., O. B. Tör, and Ş. Demirbaş, Analysis the Effects of Electric Vehicles on Distribution Networks with Simulations Based on Probabilistic Methods. Gazi University Journal of Science Part C: Design and Technology, 2021. 9(1): p.95-107.
  • 5. Akın, Ö., İ. Özer, and H. Ünlü, Selective harmonic elimination in multi-level inverters by using neural networks. International Advanced Researches and Engineering Journal, 2021. 5(1): p.19-25.
  • 6. Das, P., M. Pahlevaninezhad, J. Drobnik, G. Moschopoulos, and P. K. Jain, A nonlinear controller based on a discrete energy function for an AC/DC boost PFC converter. IEEE Transactions on Power Electronics, 2013. 28(12): p.5458-5476.
  • 7. Pena-Alzola, R., M. A. Bianchi, and M. Ordonez, Control design of a PFC with harmonic mitigation function for small hybrid AC/DC buildings. IEEE Transactions on Power Electronics, 2015. 31(9): p.6607-6620.
  • 8. Limits for Harmonic Current Emissions (Equipment Input Current up to and Including 16A Per Phase). IEC Std. 61000-3-2, 2020.
  • 9. Karaman, Ö. A., A. Gündoğdu, and M. Cebeci, Performing reactive power compensation of three-phase induction motor by using parallel active power filter. International Advanced Researches and Engineering Journal, 2020. 4(3): p.239-248.
  • 10. Musavi, F., M. Edington, W. Eberle, and W. G. Dunford, Evaluation and efficiency comparison of front end AC-DC plug-in hybrid charger topologies. IEEE Transactions on Smart grid, 2011. 3(1): p.413-421.
  • 11. Valascho, R., and S. Abdel-Rahman, Digital PFC CCM boost converter. Infineon Technologies, Application Note, Munich, Germany, 2016.
  • 12. Kalair, A., N. Abas, A. R. Kalair, Z. Saleem, and N. Khan, Review of harmonic analysis, modeling and mitigation techniques. Renewable and Sustainable Energy Reviews, 2017. 78: p.1152-1187.
  • 13. Jang, Y., and M. M. Jovanović, Bridgeless high-power-factor buck converter. IEEE Transactions on Power Electronics, 2010. 26(2): p.602-611.
  • 14. Jang, Y., and M. M. Jovanovic, A bridgeless PFC boost rectifier with optimized magnetic utilization. IEEE Transactions on Power Electronics, 2009. 24(1): p.85-93.
  • 15. Zhao, B., A. Abramovitz, and K. Smedley, Family of bridgeless buck-boost PFC rectifiers. IEEE Transactions on Power Electronics, 2015. 30(12): p.6524-6527.
  • 16. Akhtar, M. F., S. R. S. Raihan, N. A. Rahim, M. N. Akhtar and E. Abu Bakar, Recent developments in DC-DC converter topologies for light electric vehicle charging: a critical review. Applied Sciences, 2023. 13(3): p.1676.
  • 17. Kushwaha, R., B. Singh and V. Khadkikar, An improved PQ Zeta converter with reduced switch voltage stress for electric vehicle battery charger. In 2020 IEEE Energy Conversion Congress and Exposition (ECCE), 2020, October. p. 858-863. IEEE.
  • 18. Gupta, J., R. Kushwaha and B. Singh, An Isolated Improved Power Quality Battery Charger for a Light Electric Vehicle. In 2020 IEEE International Conference on Power Electronics, Smart Grid and Renewable Energy (PESGRE2020), 2020, January, p. 1-6. IEEE.
  • 19. Samsudin, N. A., D. Ishak, and A. B. Ahmad, Design and experimental evaluation of a single-stage AC/DC converter with PFC and hybrid full-bridge rectifier. Engineering science and technology, an international journal, 2018. 21(2): p.189-200.
  • 20. Jeong, S. G., J. M. Kwon, and B. H. Kwon, High-efficiency bridgeless single-power-conversion battery charger for light electric vehicles. IEEE Transactions on Industrial Electronics, 2018. 66(1): p.215-222.
  • 21. Pandey, R., and B. Singh, PFC‐SEPIC converter‐fed half‐bridge LLC resonant converter for e‐bike charging applications. IET Electrical Systems in Transportation, 2020. 10(3): p.225-233.
  • 22. Zhou, K., H. Yang, Y. Zhang, Y. Che, Y. Huang and X. Li, A review of the latest research on the topological structure and control strategies of on-board charging systems for electric vehicles. Journal of Energy Storage, 2024. 97: 112820.
  • 23. Onal, Y., Analysis of a new SEPIC AC–DC PFC converter for light emitting diode applications. Emerging Materials Research, 2021. 11(1): p.51-59.
  • 24. Dutta, S., S. Gangavarapu, A. K. Rathore, R. K. Singh, S. K. Mishra and V. Khadkikar, Novel single-phase Cuk-derived bridgeless PFC converter for on-board EV charger with reduced number of components. IEEE Transactions on Industry Applications, 2022. 58(3): p.3999-4010.
  • 25. Kushwaha, R. and B. Singh, Power factor improvement in modified bridgeless landsman converter fed EV battery charger. IEEE transactions on Vehicular Technology, 2019. 68(4): p.3325-3336.
  • 26. Kushwaha, R. and B. Singh, Power factor correction in EV charger with bridgeless Zeta-SEPIC converter. In 2019 IEEE Energy Conversion Congress and Exposition (ECCE), 2019, September, p.121-128. IEEE.
  • 27. Gupta, J., R. Kushwaha, B. Singh and V. Khadkikar, Improved power quality charging system based on high step-down gain bridgeless SEPIC APFC for light electric vehicles. IEEE Transactions on Industry Applications, 2021. 58(1): p.423-434.
  • 28. Çamur, H., Z. Ortatepe and A. Karaarslan, Comparative Analysis of Current Control Methods Implemented in Single-Phase Boost PFC Converter in CCM Mode. International Scientific Research and Innovation Congress-ISARC, İstanbul, Turkey, 2022. p.984-992.
  • 29. Gupta, M., N. Gupta, M. M. Garg and A. Kumar, Robust control strategies applicable to DC–DC converter with reliability assessment: A review. Advanced Control for Applications: Engineering and Industrial Systems, 2024. 6(3): p.217.
  • 30. Mumtaz, F., N. Z. Yahaya, S. T. Meraj, B. Singh, R. Kannan and O. Ibrahim, Review on non-isolated DC-DC converters and their control techniques for renewable energy applications. Ain Shams Engineering Journal, 2021. 12(4): p.3747-3763.
  • 31. Aldemir, A. and M. S. Anwer, Determination of optimal PID control parameters by response surface methodology. International Advanced Researches and Engineering Journal, 2020. 4(2): p.142-153.
  • 32. Hitit, Z. Y., İ. Koçer, G. Kuş, N. Z. Arslan, E. P. Dal and H. Koz, Optimal PID control with anti-windup in neutralization process. International Advanced Researches and Engineering Journal, 2023. 7(3): p.138-145.
  • 33. Sundaramoorthy, S., M. G. Umamaheswari, G. Marimuthu and B. Lekshmisree, Hopfield neural network-based average current mode control of synchronous SEPIC converter. IETE Journal of Research, 2023. 69(6): p.3897-3915.
  • 34. Durgadevi, S. and M. G. Umamaheswari, Analysis and design of single phase power factor correction with DC–DC SEPIC Converter for fast dynamic response using genetic algorithm optimised PI controller. IET Circuits, Devices & Systems, 2018. 12(2): p.164-174.
  • 35. Xia, B., Y. Li, G. Zhang, Q. Cheng and F. Ding, A double-layer ring-structured equalizer for series-connected lithium-ion battery pack based on model predictive control. Journal of Energy Storage, 2024. 78: p.110047.
  • 36. Sezen, A. and K. Keskin, Hybrid Control of DC-DC Buck Boost Converter. Demiryolu Mühendisliği, 2021. (14): p.99-109.
  • 37. Köseoğlu, E. and A. Karaarslan, Modified Bi-Directional Cuk Converter For Cell Balancing Using PI And Fuzzy Logic Control Method. Journal of Optimization and Decision Making, 2023. 2(2): p.283-289.
  • 38. Singh, B., and R. Kushwaha, A PFC based EV battery charger using a bridgeless isolated SEPIC converter. IEEE Transactions on Industry applications, (2019). 56(1): p.477-487.
  • 39. Kunjittipong, N., K. Kongkanjana, and S. Khwan-on, Comparison of fuzzy controller and PI controller for a high step-up single switch boost converter. In 2020 3rd International Conference on Power and Energy Applications (ICPEA), IEEE, 2020. p. 94-98.
  • 40. Voltages, I. S. Iec standard iec 60038. Ed, 2009.
  • 41. ALKAN, Ö., S. TOSUN and Ö. ALKAN, Enerji Kalitesi Açısından Harmonikli Bir Sağlık Tesisinin İncelenmesi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 2019. 7(1): p.709-721.
  • 42. Marti, J. V., Analysis of duty cycle to output voltage transfer functions of cúk-like class dc-dc converters. In Annual Seminar on Automation, Industrial Electronics and Instrumentation, 2015.
  • 43. Sevim, D., and V. Gider, Designing a Control Interface and PID Controller of CUK Converter. European Journal of Technique (EJT), 2021. 11(1): p.93-100.
  • 44. Anusiya, K., and K. Ramadas, SEPIC converter based transformer less grid tied PV system with reactive power compensation. In 2017 IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS), 2017. p.1-7.
  • 45. Çamur, H., Z. Ortatepe, and A. Karaarslan, Fuzzy logic control based dual input boost converter. 4. International Scientific Research and Innovation Congress, İstanbul, Turkey, 2022. p.993-1002.
Year 2024, Volume: 8 Issue: 3, 141 - 153
https://doi.org/10.35860/iarej.1501059

Abstract

References

  • 1. Drobnič, K., G. Grandi, M. Hammami, R. Mandrioli, A. Viatkin, and M. Vujacic, A ripple-free dc output current fast charger for electric vehicles based on grid-tied modular three-phase interleaved converters. In 2018 International symposium on industrial electronics (INDEL), 2018. p.1-7.
  • 2. Ajanovic, A., and R. Haas, Economic and environmental prospects for battery electric‐and fuel cell vehicles: a review. Fuel cells, (2019). 19(5): p.515-529.
  • 3. Rahman, S., I. A. Khan, and M. H. Amini, A review on impact analysis of electric vehicle charging on power distribution systems. In 2020 2nd International Conference on Smart Power & Internet Energy Systems (SPIES), IEEE, 2020, p. 420-425.
  • 4. Koç, M., O. B. Tör, and Ş. Demirbaş, Analysis the Effects of Electric Vehicles on Distribution Networks with Simulations Based on Probabilistic Methods. Gazi University Journal of Science Part C: Design and Technology, 2021. 9(1): p.95-107.
  • 5. Akın, Ö., İ. Özer, and H. Ünlü, Selective harmonic elimination in multi-level inverters by using neural networks. International Advanced Researches and Engineering Journal, 2021. 5(1): p.19-25.
  • 6. Das, P., M. Pahlevaninezhad, J. Drobnik, G. Moschopoulos, and P. K. Jain, A nonlinear controller based on a discrete energy function for an AC/DC boost PFC converter. IEEE Transactions on Power Electronics, 2013. 28(12): p.5458-5476.
  • 7. Pena-Alzola, R., M. A. Bianchi, and M. Ordonez, Control design of a PFC with harmonic mitigation function for small hybrid AC/DC buildings. IEEE Transactions on Power Electronics, 2015. 31(9): p.6607-6620.
  • 8. Limits for Harmonic Current Emissions (Equipment Input Current up to and Including 16A Per Phase). IEC Std. 61000-3-2, 2020.
  • 9. Karaman, Ö. A., A. Gündoğdu, and M. Cebeci, Performing reactive power compensation of three-phase induction motor by using parallel active power filter. International Advanced Researches and Engineering Journal, 2020. 4(3): p.239-248.
  • 10. Musavi, F., M. Edington, W. Eberle, and W. G. Dunford, Evaluation and efficiency comparison of front end AC-DC plug-in hybrid charger topologies. IEEE Transactions on Smart grid, 2011. 3(1): p.413-421.
  • 11. Valascho, R., and S. Abdel-Rahman, Digital PFC CCM boost converter. Infineon Technologies, Application Note, Munich, Germany, 2016.
  • 12. Kalair, A., N. Abas, A. R. Kalair, Z. Saleem, and N. Khan, Review of harmonic analysis, modeling and mitigation techniques. Renewable and Sustainable Energy Reviews, 2017. 78: p.1152-1187.
  • 13. Jang, Y., and M. M. Jovanović, Bridgeless high-power-factor buck converter. IEEE Transactions on Power Electronics, 2010. 26(2): p.602-611.
  • 14. Jang, Y., and M. M. Jovanovic, A bridgeless PFC boost rectifier with optimized magnetic utilization. IEEE Transactions on Power Electronics, 2009. 24(1): p.85-93.
  • 15. Zhao, B., A. Abramovitz, and K. Smedley, Family of bridgeless buck-boost PFC rectifiers. IEEE Transactions on Power Electronics, 2015. 30(12): p.6524-6527.
  • 16. Akhtar, M. F., S. R. S. Raihan, N. A. Rahim, M. N. Akhtar and E. Abu Bakar, Recent developments in DC-DC converter topologies for light electric vehicle charging: a critical review. Applied Sciences, 2023. 13(3): p.1676.
  • 17. Kushwaha, R., B. Singh and V. Khadkikar, An improved PQ Zeta converter with reduced switch voltage stress for electric vehicle battery charger. In 2020 IEEE Energy Conversion Congress and Exposition (ECCE), 2020, October. p. 858-863. IEEE.
  • 18. Gupta, J., R. Kushwaha and B. Singh, An Isolated Improved Power Quality Battery Charger for a Light Electric Vehicle. In 2020 IEEE International Conference on Power Electronics, Smart Grid and Renewable Energy (PESGRE2020), 2020, January, p. 1-6. IEEE.
  • 19. Samsudin, N. A., D. Ishak, and A. B. Ahmad, Design and experimental evaluation of a single-stage AC/DC converter with PFC and hybrid full-bridge rectifier. Engineering science and technology, an international journal, 2018. 21(2): p.189-200.
  • 20. Jeong, S. G., J. M. Kwon, and B. H. Kwon, High-efficiency bridgeless single-power-conversion battery charger for light electric vehicles. IEEE Transactions on Industrial Electronics, 2018. 66(1): p.215-222.
  • 21. Pandey, R., and B. Singh, PFC‐SEPIC converter‐fed half‐bridge LLC resonant converter for e‐bike charging applications. IET Electrical Systems in Transportation, 2020. 10(3): p.225-233.
  • 22. Zhou, K., H. Yang, Y. Zhang, Y. Che, Y. Huang and X. Li, A review of the latest research on the topological structure and control strategies of on-board charging systems for electric vehicles. Journal of Energy Storage, 2024. 97: 112820.
  • 23. Onal, Y., Analysis of a new SEPIC AC–DC PFC converter for light emitting diode applications. Emerging Materials Research, 2021. 11(1): p.51-59.
  • 24. Dutta, S., S. Gangavarapu, A. K. Rathore, R. K. Singh, S. K. Mishra and V. Khadkikar, Novel single-phase Cuk-derived bridgeless PFC converter for on-board EV charger with reduced number of components. IEEE Transactions on Industry Applications, 2022. 58(3): p.3999-4010.
  • 25. Kushwaha, R. and B. Singh, Power factor improvement in modified bridgeless landsman converter fed EV battery charger. IEEE transactions on Vehicular Technology, 2019. 68(4): p.3325-3336.
  • 26. Kushwaha, R. and B. Singh, Power factor correction in EV charger with bridgeless Zeta-SEPIC converter. In 2019 IEEE Energy Conversion Congress and Exposition (ECCE), 2019, September, p.121-128. IEEE.
  • 27. Gupta, J., R. Kushwaha, B. Singh and V. Khadkikar, Improved power quality charging system based on high step-down gain bridgeless SEPIC APFC for light electric vehicles. IEEE Transactions on Industry Applications, 2021. 58(1): p.423-434.
  • 28. Çamur, H., Z. Ortatepe and A. Karaarslan, Comparative Analysis of Current Control Methods Implemented in Single-Phase Boost PFC Converter in CCM Mode. International Scientific Research and Innovation Congress-ISARC, İstanbul, Turkey, 2022. p.984-992.
  • 29. Gupta, M., N. Gupta, M. M. Garg and A. Kumar, Robust control strategies applicable to DC–DC converter with reliability assessment: A review. Advanced Control for Applications: Engineering and Industrial Systems, 2024. 6(3): p.217.
  • 30. Mumtaz, F., N. Z. Yahaya, S. T. Meraj, B. Singh, R. Kannan and O. Ibrahim, Review on non-isolated DC-DC converters and their control techniques for renewable energy applications. Ain Shams Engineering Journal, 2021. 12(4): p.3747-3763.
  • 31. Aldemir, A. and M. S. Anwer, Determination of optimal PID control parameters by response surface methodology. International Advanced Researches and Engineering Journal, 2020. 4(2): p.142-153.
  • 32. Hitit, Z. Y., İ. Koçer, G. Kuş, N. Z. Arslan, E. P. Dal and H. Koz, Optimal PID control with anti-windup in neutralization process. International Advanced Researches and Engineering Journal, 2023. 7(3): p.138-145.
  • 33. Sundaramoorthy, S., M. G. Umamaheswari, G. Marimuthu and B. Lekshmisree, Hopfield neural network-based average current mode control of synchronous SEPIC converter. IETE Journal of Research, 2023. 69(6): p.3897-3915.
  • 34. Durgadevi, S. and M. G. Umamaheswari, Analysis and design of single phase power factor correction with DC–DC SEPIC Converter for fast dynamic response using genetic algorithm optimised PI controller. IET Circuits, Devices & Systems, 2018. 12(2): p.164-174.
  • 35. Xia, B., Y. Li, G. Zhang, Q. Cheng and F. Ding, A double-layer ring-structured equalizer for series-connected lithium-ion battery pack based on model predictive control. Journal of Energy Storage, 2024. 78: p.110047.
  • 36. Sezen, A. and K. Keskin, Hybrid Control of DC-DC Buck Boost Converter. Demiryolu Mühendisliği, 2021. (14): p.99-109.
  • 37. Köseoğlu, E. and A. Karaarslan, Modified Bi-Directional Cuk Converter For Cell Balancing Using PI And Fuzzy Logic Control Method. Journal of Optimization and Decision Making, 2023. 2(2): p.283-289.
  • 38. Singh, B., and R. Kushwaha, A PFC based EV battery charger using a bridgeless isolated SEPIC converter. IEEE Transactions on Industry applications, (2019). 56(1): p.477-487.
  • 39. Kunjittipong, N., K. Kongkanjana, and S. Khwan-on, Comparison of fuzzy controller and PI controller for a high step-up single switch boost converter. In 2020 3rd International Conference on Power and Energy Applications (ICPEA), IEEE, 2020. p. 94-98.
  • 40. Voltages, I. S. Iec standard iec 60038. Ed, 2009.
  • 41. ALKAN, Ö., S. TOSUN and Ö. ALKAN, Enerji Kalitesi Açısından Harmonikli Bir Sağlık Tesisinin İncelenmesi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 2019. 7(1): p.709-721.
  • 42. Marti, J. V., Analysis of duty cycle to output voltage transfer functions of cúk-like class dc-dc converters. In Annual Seminar on Automation, Industrial Electronics and Instrumentation, 2015.
  • 43. Sevim, D., and V. Gider, Designing a Control Interface and PID Controller of CUK Converter. European Journal of Technique (EJT), 2021. 11(1): p.93-100.
  • 44. Anusiya, K., and K. Ramadas, SEPIC converter based transformer less grid tied PV system with reactive power compensation. In 2017 IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS), 2017. p.1-7.
  • 45. Çamur, H., Z. Ortatepe, and A. Karaarslan, Fuzzy logic control based dual input boost converter. 4. International Scientific Research and Innovation Congress, İstanbul, Turkey, 2022. p.993-1002.
There are 45 citations in total.

Details

Primary Language English
Subjects Electrical Energy Storage
Journal Section Research Articles
Authors

Alperen Uğurluoğlu 0000-0001-8038-5729

Ahmet Karaarslan 0000-0001-6475-4539

Publication Date
Submission Date June 13, 2024
Acceptance Date December 12, 2024
Published in Issue Year 2024 Volume: 8 Issue: 3

Cite

APA Uğurluoğlu, A., & Karaarslan, A. (n.d.). Simulation of fuzzy logic and PI control methods on a bridgeless isolated SEPIC converter for electric vehicle chargers. International Advanced Researches and Engineering Journal, 8(3), 141-153. https://doi.org/10.35860/iarej.1501059
AMA Uğurluoğlu A, Karaarslan A. Simulation of fuzzy logic and PI control methods on a bridgeless isolated SEPIC converter for electric vehicle chargers. Int. Adv. Res. Eng. J. 8(3):141-153. doi:10.35860/iarej.1501059
Chicago Uğurluoğlu, Alperen, and Ahmet Karaarslan. “Simulation of Fuzzy Logic and PI Control Methods on a Bridgeless Isolated SEPIC Converter for Electric Vehicle Chargers”. International Advanced Researches and Engineering Journal 8, no. 3 n.d.: 141-53. https://doi.org/10.35860/iarej.1501059.
EndNote Uğurluoğlu A, Karaarslan A Simulation of fuzzy logic and PI control methods on a bridgeless isolated SEPIC converter for electric vehicle chargers. International Advanced Researches and Engineering Journal 8 3 141–153.
IEEE A. Uğurluoğlu and A. Karaarslan, “Simulation of fuzzy logic and PI control methods on a bridgeless isolated SEPIC converter for electric vehicle chargers”, Int. Adv. Res. Eng. J., vol. 8, no. 3, pp. 141–153, doi: 10.35860/iarej.1501059.
ISNAD Uğurluoğlu, Alperen - Karaarslan, Ahmet. “Simulation of Fuzzy Logic and PI Control Methods on a Bridgeless Isolated SEPIC Converter for Electric Vehicle Chargers”. International Advanced Researches and Engineering Journal 8/3 (n.d.), 141-153. https://doi.org/10.35860/iarej.1501059.
JAMA Uğurluoğlu A, Karaarslan A. Simulation of fuzzy logic and PI control methods on a bridgeless isolated SEPIC converter for electric vehicle chargers. Int. Adv. Res. Eng. J.;8:141–153.
MLA Uğurluoğlu, Alperen and Ahmet Karaarslan. “Simulation of Fuzzy Logic and PI Control Methods on a Bridgeless Isolated SEPIC Converter for Electric Vehicle Chargers”. International Advanced Researches and Engineering Journal, vol. 8, no. 3, pp. 141-53, doi:10.35860/iarej.1501059.
Vancouver Uğurluoğlu A, Karaarslan A. Simulation of fuzzy logic and PI control methods on a bridgeless isolated SEPIC converter for electric vehicle chargers. Int. Adv. Res. Eng. J. 8(3):141-53.



Creative Commons License

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.