Research Article
BibTex RIS Cite

CUSTOMER SEGMENTATION WITH CLUSTERING METHODS IN THE RETAIL INDUSTRY

Year 2024, Volume: 16 Issue: 4, 551 - 573, 22.10.2024

Abstract

The marketing world moves away from product-oriented work, understood customer importance, and shifts towards customer-centered practices. Today with tech development and increasing competition, company-customer relations become more important. Creating a customer profile is critical for businesses to recognize their customers and distinguish their most profitable customers. By understanding their customer behavior, companies can tailor their marketing and customer relationship management strategies to suit them and fulfill their customer needs, increasing their satisfaction and loyalty to their business, and encouraging them to shop from them again. Thus, this study aims to categorize customers based on RFM metrics and interpret the obtained clusters from a marketing perspective. At the segmentation phase, hierarchical and non-hierarchical clustering methods, namely k-means, AGNES, and DBSCAN, are used and the results are compared. First, data, which consist of the shopping information of 38975 customers who shopped from e-commerce in one year, are collected from a textile retail company in Istanbul. Then, the purchase amount spent by customers is additionally scored to reveal the most valuable customers. It is observed that better results are mined from the k-means algorithms. As a result, four different customer types are determined: loyal customer, potential customer, new customer, and lost customer types. In conclusion, profile-oriented marketing strategies are presented.

References

  • Adomavicius, G., & Tuzhilin, A. (2001). Using data mining methods to build customer profiles. Computer, 34(2), 74-82.
  • Bhatia, T. K., Gupta, S., & Sharma, A. (2022, October). Analysis of Customer Segmentation Model through K-Means Clustering. In 2022 10th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions)(ICRITO) (pp. 1-6). IEEE.
  • Birant, D. (2011). Data Mining Using RFM Analysis, Knowledge-Oriented Applications in Data Mining, Prof. Kimito Funatsu (Ed.), ISBN: 978- 953-307- 154-1, InTech.
  • Brahmana, R. S., Mohammed, F. A., & Chairuang, K. (2020). Customer segmentation based on RFM model using K-means, K-medoids, and DBSCAN methods. Lontar Komput. J. Ilm. Teknol. Inf, 11(1), 32.
  • Buckinx, W., & Van den Poel, D. (2005). Customer base analysis: partial defection of behaviourally loyal clients in a non-contractual FMCG retail setting. European journal of operational research, 164(1), 252-268.
  • Caliński, T., & Harabasz, J. (1974). A dendrite method for cluster analysis. Communications in Statistics-theory and Methods, 3(1), 1-27.
  • Chan, C. C. H. (2008). Intelligent value-based customer segmentation method for campaign management: A case study of automobile retailer. Expert systems with applications, 34(4), 2754-2762.
  • Chang, H. C., & Tsai, H. P. (2011). Group RFM analysis as a novel framework to discover better customer consumption behavior. Expert Systems with Applications, 38(12), 14499-14513.

PERAKENDE SEKTÖRÜNDE KÜMELEME YÖNTEMLERİ İLE MÜŞTERİ SEGMENTASYONU

Year 2024, Volume: 16 Issue: 4, 551 - 573, 22.10.2024

Abstract

Pazarlama dünyası ürün odaklı çalışmalardan uzaklaşıyor, müşterinin önemini anlıyor ve müşteri odaklı uygulamalara doğru kayıyor. Günümüzde teknolojinin gelişmesi ve rekabetin artmasıyla birlikte şirket-müşteri ilişkileri daha da önem kazanmaktadır. İşletmelerin müşterilerini tanıması ve en kârlı müşterilerini ayırt edebilmesi için müşteri profili oluşturmak kritik öneme sahiptir. Şirketler, müşteri davranışlarını anlayarak, pazarlama ve müşteri ilişkileri yönetimi stratejilerini kendilerine uyacak ve müşteri ihtiyaçlarını karşılayacak şekilde uyarlayabilir, işlerine olan memnuniyetlerini ve bağlılıklarını artırabilir ve onları onlardan tekrar alışveriş yapmaya teşvik edebilir. Böylece bu çalışma, RFM metriklerine göre müşterileri kategorize etmeyi ve elde edilen kümeleri pazarlama perspektifinden yorumlamayı amaçlamaktadır. Segmentasyon aşamasında k-means, AGNES ve DBSCAN gibi hiyerarşik ve hiyerarşik olmayan kümeleme yöntemleri kullanılarak sonuçlar karşılaştırılmıştır. Öncelikle İstanbul'daki bir tekstil perakende firmasından bir yıl içinde e-ticaretten alışveriş yapan 38975 müşterinin alışveriş bilgilerinden oluşan veriler toplanmıştır. Daha sonra müşterilerin harcadığı satın alma tutarı ek olarak puanlanarak en değerli müşteriler ortaya çıkarılır. K-means algoritmalarından daha iyi sonuçlar elde edildiği görülmektedir. Sonuç olarak dört farklı müşteri tipi belirlendi: sadık müşteri, potansiyel müşteri, yeni müşteri ve kayıp müşteri tipleri. Sonuç olarak profil odaklı pazarlama stratejileri sunulmaktadır.

References

  • Adomavicius, G., & Tuzhilin, A. (2001). Using data mining methods to build customer profiles. Computer, 34(2), 74-82.
  • Bhatia, T. K., Gupta, S., & Sharma, A. (2022, October). Analysis of Customer Segmentation Model through K-Means Clustering. In 2022 10th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions)(ICRITO) (pp. 1-6). IEEE.
  • Birant, D. (2011). Data Mining Using RFM Analysis, Knowledge-Oriented Applications in Data Mining, Prof. Kimito Funatsu (Ed.), ISBN: 978- 953-307- 154-1, InTech.
  • Brahmana, R. S., Mohammed, F. A., & Chairuang, K. (2020). Customer segmentation based on RFM model using K-means, K-medoids, and DBSCAN methods. Lontar Komput. J. Ilm. Teknol. Inf, 11(1), 32.
  • Buckinx, W., & Van den Poel, D. (2005). Customer base analysis: partial defection of behaviourally loyal clients in a non-contractual FMCG retail setting. European journal of operational research, 164(1), 252-268.
  • Caliński, T., & Harabasz, J. (1974). A dendrite method for cluster analysis. Communications in Statistics-theory and Methods, 3(1), 1-27.
  • Chan, C. C. H. (2008). Intelligent value-based customer segmentation method for campaign management: A case study of automobile retailer. Expert systems with applications, 34(4), 2754-2762.
  • Chang, H. C., & Tsai, H. P. (2011). Group RFM analysis as a novel framework to discover better customer consumption behavior. Expert Systems with Applications, 38(12), 14499-14513.
There are 8 citations in total.

Details

Primary Language English
Subjects Customer Relationship Management
Journal Section Research Articles
Authors

Hayriye Şentürk 0000-0002-9523-8745

Ebru Geçici 0000-0002-7954-9578

Selçuk Alp 0000-0002-6545-4287

Publication Date October 22, 2024
Submission Date July 13, 2024
Acceptance Date September 4, 2024
Published in Issue Year 2024 Volume: 16 Issue: 4

Cite

APA Şentürk, H., Geçici, E., & Alp, S. (2024). CUSTOMER SEGMENTATION WITH CLUSTERING METHODS IN THE RETAIL INDUSTRY. İstanbul Aydın Üniversitesi Sosyal Bilimler Dergisi, 16(4), 551-573.


All site content, except where otherwise noted, is licensed under a Creative Common Attribution Licence. (CC-BY-NC 4.0)