Research Article
BibTex RIS Cite

FARKLI TİPTEKİ KAPAKLI LİNGUAL ORTODONTİ BRAKETLERİ İLE ARK TELLERİ ARASINDAKİ SÜRTÜNME DİRENCİNİN İN VİTRO OLARAK DEĞERLENDİRİLMESİ

Year 2019, Volume: 2 Issue: 2, 76 - 98, 30.09.2019

Abstract

Amaç: Sürtünme, ortodontide mekanoterapiye direnç gösteren ve etkin diş hareketini sağlamak için dikkatle değerlendirilmesi gereken bir olgudur. Bu çalışmanın amacı, üç farklı tipteki kapaklı lingual ortodonti braketleri ile eşlenen nikel titanyum ve paslanmaz çelik tellerin 0 °, 5 ° ve 10 ° açılanmalarda oluşturduğu statik ve kinetik sürtünme dirençlerini değerlendirmektir. Bu çalışmanın sıfır hipotezi  ortodontik ark telleri ile eşlenen üç farklı tipteki kapaklı ortodonti braketlerinin sürtünme direnç değerleri arasında anlamlı bir farklılık olmadığıdır. 

 

 

Gereç ve yöntem: Evolution™,  In-Ovation® L ve Phantom ™ sağ üst kanin braketleri (0,018x0,025 inç slot) ile 0,016 inç nikel titanyum, 0,016 inç paslanmaz çelik ve 0,016x0,022 inç boyutlu paslanmaz çelik ark telleri arasındaki sürtünme dirençleri kuru ortamda test edildi. Sürtünme dirençleri evrensel test cihazı ile değerlendirildi. Ayrıca braketlerin slot genişliği ölçüldü. Braket slotlarının yüzey pürüzlülüğü atomik kuvvet mikroskobu ve taramalı elektron mikroskobu ile incelendi. 

 

Bulgular:Tüm açılanmalardaki tüm kombinasyonlarda en düşük statik sürtünme direnci In-Ovation® L ile 0,016 inç nikel titanyum (2,00±0,02 N) ark teli arasında 0° açılanmada ve en yüksek direnç ise Evolution™ braketler ile  0,016x0,022 inç paslanmaz çelik teller arasında oluşmuştur (5,53±0,55 N).

 

Sonuç: Tüm açılanmalarda statik sürtünme dirençleri kinetik sürtünme dirençlerinden daha yüksek bulundu. Phantom ™ braketlerim en büyük slot genişliğine sahip olduğu belirlendi  ve In-Ovation® L ve Evolution ™  braketlerin Phantom ™ braketlerinden  daha az slot genişliğine sahip olduğu bulundu. Braketler arasında slot yüzey pürüzlülüğü açısından anlamlı farlılık bulunmadı. Çalışmanın sıfır hipotezi reddedildi.

 

 

Supporting Institution

yok

Project Number

yok

Thanks

yok

References

  • Angolkar, P. V., Kapila, S., Duncanson Jr, M. G., & Nanda, R. S. (1990). Evaluation of friction between ceramic brackets and orthodontic wires of four alloys. American Journal of Orthodontics and Dentofacial Orthopedics, 98(6), 499-506.
  • Articolo, L. C., & Kusy, R. P. (1999). Influence of angulation on the resistance to sliding in fixed appliances. American Journal of Orthodontics and Dentofacial Orthopedics, 115(1), 39-51.
  • Baccetti, T., Franchi, L., & Camporesi, M. (2008). Forces in the presence of ceramic versus stainless steel brackets with unconventional vs conventional ligatures. The Angle Orthodontist, 78(1), 120-124.
  • Berger, J. L. (1990). The influence of the SPEED bracket's self-ligating design on force levels in tooth movement: a comparative in vitro study. American Journal of Orthodontics and Dentofacial Orthopedics, 97(3), 219-228.
  • Burstone, C. J. (1981). Variable-modulus orthodontics. American Journal of Orthodontics, 80(1), 1-16.
  • Cacciafesta, V., Sfondrini, M. F., Ricciardi, A., Scribante, A., Klersy, C., & Auricchio, F. (2003). Evaluation of friction of stainless steel and esthetic self-ligating brackets in various bracket-archwire combinations. American Journal of Orthodontics and Dentofacial Orthopedics, 124(4), 395-402.
  • Clocheret, K., Willems, G., Carels, C., & Celis, J. P. (2004). Dynamic frictional behaviour of orthodontic archwires and brackets. The European Journal of Orthodontics, 26(2), 163-170.
  • De Franco, D. J., Spiller Jr, R. E., & Von Fraunhofer, J. A. (1995). Frictional resistances using Teflon-coated ligatures with various bracket-archwire combinations. The Angle Orthodontist, 65(1), 63-72.
  • Dickson, J., & Jones, S. P. (1996). Frictional characteristics of a modified ceramic bracket. Journal of Clinical Orthodontics, 30(9), 516-518.
  • Downing, A., McCabe, J., & Gordon, P. (1994). A study of frictional forces between orthodontic brackets and archwires. British Journal of Orthodontics, 21(4), 349-357.
  • Frank, C. A., & Nikolai, R. J. (1980). A comparative study of frictional resistances between orthodontic bracket and arch wire. American Journal of Orthodontics, 78(6), 593-609.
  • Geron, S. (2008, March). Self-ligating brackets in lingual orthodontics. In Seminars in Orthodontics (Vol. 14, No. 1, pp. 64-72). WB Saunders.
  • Harradine, N. (2008, March). The history and development of self-ligating brackets. In Seminars in Orthodontics (Vol. 14, No. 1, pp. 5-18). WB Saunders.
  • Ho, K. S., & West, V. C. (1991). Friction resistance between edgewise brackets and archwires. Australian orthodontic journal, 12(2), 95.
  • Kapila, S., Angolkar, P. V., Duncanson Jr, M. G., & Nanda, R. S. (1990). Evaluation of friction between edgewise stainless steel brackets and orthodontic wires of four alloys. American Journal of Orthodontics and Dentofacial Orthopedics, 98(2), 117-126.
  • Kusy, R. P., & Whitley, J. Q. (1989). Effects of sliding velocity on the coefficients of friction in a model orthodontic system. Dental Materials, 5(4), 235-240.Kusy, R. P., & Whitley, J. Q. (1990). Coefficients of friction for arch wires in stainless steel and polycrystalline alumina bracket slots. I. The dry state. American Journal of Orthodontics and Dentofacial Orthopedics, 98(4), 300-312. Kusy, R. P., & Whitley, J. Q. (1999). Influence of archwire and bracket dimensions on sliding mechanics: derivations and determinations of the critical contact angles for binding. The European Journal of Orthodontics, 21(2), 199-208.
  • Mendes, K., & Rossouw, P. E. (2003, December). Friction: validation of manufacturer’s claim. In Seminars in Orthodontics(Vol. 9, No. 4, pp. 236-250). WB Saunders.
  • Moore, M. M., Harrington, E., & Rock, W. P. (2004). Factors affecting friction in the pre-adjusted appliance. The European Journal of Orthodontics, 26(6), 579-583.
  • Nanda, R., & Ghosh, J. (1997). Biomechanical considerations in sliding mechanics. Biomechanics in clinical orthodontics. Philadelphia, PA: WB Saunders, 188-217.
  • Peterson, L. (1982). A comparison of friction resistance for Nitinol and stainless steel wire in edgewise brackets. Quintessence International, 5, 563-571.
  • Redlich, M., Mayer, Y., Harari, D., & Lewinstein, I. (2003). In vitro study of frictional forces during sliding mechanics of “reduced-friction” brackets. American Journal of Orthodontics and Dentofacial Orthopedics, 124(1), 69-73.
  • Rossouw, P. E. (2003, December). Friction: an overview. In Seminars in Orthodontics (Vol. 9, No. 4, pp. 218-222). Elsevier.Smith, D. V., Rossouw, P. E., & Watson, P. (2003, December). Quantified simulation of canine retraction: evaluation of frictional resistance. In Seminars in Orthodontics (Vol. 9, No. 4, pp. 262-280). WB Saunders.
  • Tanne, K., Matsubara, S., Shibaguchi, T., & Sakuda, M. (1991). Wire friction from ceramic brackets during simulated canine retraction. The Angle Orthodontist, 61(4), 285-290.
  • Taylor, N. G., & Ison, K. (1996). Frictional resistance between orthodontic brackets and archwires in the buccal segments. The Angle Orthodontist, 66(3), 215-222.
  • Tecco, S., Festa, F., Caputi, S., Traini, T., Di Iorio, D., & D'Attilio, M. (2005). Friction of conventional and self-ligating brackets using a 10 bracket model. The Angle Orthodontist, 75(6), 1041-1045.
  • Tidy, D. C., & Orth, D. (1989). Frictional forces in fixed appliances. American Journal of Orthodontics and Dentofacial Orthopedics, 96(3), 249-254.
  • Ozturk Ortan, Y., Yurdakuloglu Arslan, T., & Aydemir, B. (2011). A comparative in vitro study of frictional resistance between lingual brackets and stainless steel archwires. The European Journal of Orthodontics, 34(1), 119-125.
Year 2019, Volume: 2 Issue: 2, 76 - 98, 30.09.2019

Abstract

Project Number

yok

References

  • Angolkar, P. V., Kapila, S., Duncanson Jr, M. G., & Nanda, R. S. (1990). Evaluation of friction between ceramic brackets and orthodontic wires of four alloys. American Journal of Orthodontics and Dentofacial Orthopedics, 98(6), 499-506.
  • Articolo, L. C., & Kusy, R. P. (1999). Influence of angulation on the resistance to sliding in fixed appliances. American Journal of Orthodontics and Dentofacial Orthopedics, 115(1), 39-51.
  • Baccetti, T., Franchi, L., & Camporesi, M. (2008). Forces in the presence of ceramic versus stainless steel brackets with unconventional vs conventional ligatures. The Angle Orthodontist, 78(1), 120-124.
  • Berger, J. L. (1990). The influence of the SPEED bracket's self-ligating design on force levels in tooth movement: a comparative in vitro study. American Journal of Orthodontics and Dentofacial Orthopedics, 97(3), 219-228.
  • Burstone, C. J. (1981). Variable-modulus orthodontics. American Journal of Orthodontics, 80(1), 1-16.
  • Cacciafesta, V., Sfondrini, M. F., Ricciardi, A., Scribante, A., Klersy, C., & Auricchio, F. (2003). Evaluation of friction of stainless steel and esthetic self-ligating brackets in various bracket-archwire combinations. American Journal of Orthodontics and Dentofacial Orthopedics, 124(4), 395-402.
  • Clocheret, K., Willems, G., Carels, C., & Celis, J. P. (2004). Dynamic frictional behaviour of orthodontic archwires and brackets. The European Journal of Orthodontics, 26(2), 163-170.
  • De Franco, D. J., Spiller Jr, R. E., & Von Fraunhofer, J. A. (1995). Frictional resistances using Teflon-coated ligatures with various bracket-archwire combinations. The Angle Orthodontist, 65(1), 63-72.
  • Dickson, J., & Jones, S. P. (1996). Frictional characteristics of a modified ceramic bracket. Journal of Clinical Orthodontics, 30(9), 516-518.
  • Downing, A., McCabe, J., & Gordon, P. (1994). A study of frictional forces between orthodontic brackets and archwires. British Journal of Orthodontics, 21(4), 349-357.
  • Frank, C. A., & Nikolai, R. J. (1980). A comparative study of frictional resistances between orthodontic bracket and arch wire. American Journal of Orthodontics, 78(6), 593-609.
  • Geron, S. (2008, March). Self-ligating brackets in lingual orthodontics. In Seminars in Orthodontics (Vol. 14, No. 1, pp. 64-72). WB Saunders.
  • Harradine, N. (2008, March). The history and development of self-ligating brackets. In Seminars in Orthodontics (Vol. 14, No. 1, pp. 5-18). WB Saunders.
  • Ho, K. S., & West, V. C. (1991). Friction resistance between edgewise brackets and archwires. Australian orthodontic journal, 12(2), 95.
  • Kapila, S., Angolkar, P. V., Duncanson Jr, M. G., & Nanda, R. S. (1990). Evaluation of friction between edgewise stainless steel brackets and orthodontic wires of four alloys. American Journal of Orthodontics and Dentofacial Orthopedics, 98(2), 117-126.
  • Kusy, R. P., & Whitley, J. Q. (1989). Effects of sliding velocity on the coefficients of friction in a model orthodontic system. Dental Materials, 5(4), 235-240.Kusy, R. P., & Whitley, J. Q. (1990). Coefficients of friction for arch wires in stainless steel and polycrystalline alumina bracket slots. I. The dry state. American Journal of Orthodontics and Dentofacial Orthopedics, 98(4), 300-312. Kusy, R. P., & Whitley, J. Q. (1999). Influence of archwire and bracket dimensions on sliding mechanics: derivations and determinations of the critical contact angles for binding. The European Journal of Orthodontics, 21(2), 199-208.
  • Mendes, K., & Rossouw, P. E. (2003, December). Friction: validation of manufacturer’s claim. In Seminars in Orthodontics(Vol. 9, No. 4, pp. 236-250). WB Saunders.
  • Moore, M. M., Harrington, E., & Rock, W. P. (2004). Factors affecting friction in the pre-adjusted appliance. The European Journal of Orthodontics, 26(6), 579-583.
  • Nanda, R., & Ghosh, J. (1997). Biomechanical considerations in sliding mechanics. Biomechanics in clinical orthodontics. Philadelphia, PA: WB Saunders, 188-217.
  • Peterson, L. (1982). A comparison of friction resistance for Nitinol and stainless steel wire in edgewise brackets. Quintessence International, 5, 563-571.
  • Redlich, M., Mayer, Y., Harari, D., & Lewinstein, I. (2003). In vitro study of frictional forces during sliding mechanics of “reduced-friction” brackets. American Journal of Orthodontics and Dentofacial Orthopedics, 124(1), 69-73.
  • Rossouw, P. E. (2003, December). Friction: an overview. In Seminars in Orthodontics (Vol. 9, No. 4, pp. 218-222). Elsevier.Smith, D. V., Rossouw, P. E., & Watson, P. (2003, December). Quantified simulation of canine retraction: evaluation of frictional resistance. In Seminars in Orthodontics (Vol. 9, No. 4, pp. 262-280). WB Saunders.
  • Tanne, K., Matsubara, S., Shibaguchi, T., & Sakuda, M. (1991). Wire friction from ceramic brackets during simulated canine retraction. The Angle Orthodontist, 61(4), 285-290.
  • Taylor, N. G., & Ison, K. (1996). Frictional resistance between orthodontic brackets and archwires in the buccal segments. The Angle Orthodontist, 66(3), 215-222.
  • Tecco, S., Festa, F., Caputi, S., Traini, T., Di Iorio, D., & D'Attilio, M. (2005). Friction of conventional and self-ligating brackets using a 10 bracket model. The Angle Orthodontist, 75(6), 1041-1045.
  • Tidy, D. C., & Orth, D. (1989). Frictional forces in fixed appliances. American Journal of Orthodontics and Dentofacial Orthopedics, 96(3), 249-254.
  • Ozturk Ortan, Y., Yurdakuloglu Arslan, T., & Aydemir, B. (2011). A comparative in vitro study of frictional resistance between lingual brackets and stainless steel archwires. The European Journal of Orthodontics, 34(1), 119-125.
There are 27 citations in total.

Details

Primary Language English
Subjects Dentistry
Journal Section Articles
Authors

Gülşilay Sayar 0000-0003-3294-2644

Yıldız Öztürk Ortan This is me

Bülent Aydemir

Project Number yok
Publication Date September 30, 2019
Submission Date May 15, 2019
Published in Issue Year 2019 Volume: 2 Issue: 2

Cite

APA Sayar, G., Öztürk Ortan, Y., & Aydemir, B. (2019). FARKLI TİPTEKİ KAPAKLI LİNGUAL ORTODONTİ BRAKETLERİ İLE ARK TELLERİ ARASINDAKİ SÜRTÜNME DİRENCİNİN İN VİTRO OLARAK DEĞERLENDİRİLMESİ. Izmir Democracy University Health Sciences Journal, 2(2), 76-98.

227151960619606                 19629                   19630 1995319957 

19952  19958  20682 

20686


23848