Year 2019,
, 1 - 7, 30.06.2019
Gizem Kaleli Can
,
Selma Mutlu
,
Mehmet Mutlu
References
- Mutlu S., 2011. Mass Sensitive Biosensors: Principles and Applications in Food in: Mutlu M. (Ed.), Biosensors in Food Processing, Safety, and Quality Control. Taylor and Francis, CRC Press, New York, pp. 71-89.
- Ricci, F., G. Volpe, L. Micheli, and G. Palleschi. 2007. A review on novel developments and applications of immunosensors in food analysis. Analytica Chimica Acta 605:111-29.
- Kurosawa, S., E. Tawara, N. Kamo, and Y. Kobatake. 1990. Oscillating frequency of piezo-electric quartz crystal in solutions. Analytica Chimica Acta 230:41-49.
- Muratsugu, M., F. Ohta, Y. Miya et al. 1993. Quartz Crystal Microbalance for the Detection of microgram quantities of Human Serum Albumin: Relationship between the frequency change and the mass of protein adsorbed. Analytical Chemistry 65(20):2933-37.
- Kaleli Can, G.: Development of QTF-Based Mass Sensitive Immunosensor for Phenylketonuria Diagnosis.(TOBB University of Economics and Technology, ANKARA, 2018)
- Alp, B., Mutlu, S., Mutlu, M., 2000. Food research international. 33(2), 107-112.
- Jenik, M., Seifner, A., Lieberzeit, P., Dickert, F.L., 2009. Analytical and bioanalytical chemistry. 394(2), 523-528
- Koshets, I., Kazantseva, Z., Shirshov, Y.M., 2003. Semiconductor physics quantum electronics and optoelectronics. 6(4), 505-507.
- Öztürk, K., Durusoy, M., Pişkin, E., 2008. Journal of Bioactive and Compatible Polymers. 23(6), 579-593.
- Rodoplu, D., Sen, Y., Mutlu, M., 2013. Nanoscience and Nanotechnology Letters. 5(4), 444- 451.
- Tsai, W.-B., Chien, C.-Y., Thissen, H., Lai, J.-Y., 2011. Acta biomaterialia. 7(6), 2518-2525.
- Zhang, C., Cappleman, B., Defibaugh‐Chavez, M., Weinkauf, D., 2003. Journal of Polymer Science Part B: Polymer Physics. 41(18), 2109-2118.
- Kabay, G., Can, G. K., & Mutlu, M. (2017). Amyloid-like protein nanofibrous membranes as a sensing layer infrastructure for the design of mass-sensitive biosensors. Biosensors and Bioelectronics, 97, 285-291.
- Park, I.S., Kim N., 1998. Biosensors and Bioelectronics. 13(10):1091-97.
- Park, I.S., Kim D. K., Adanyi N., Varadi M., Kim. N., 2004. Biosensors and Bioelectronics. 19(7):667-74.
- Nakanishi K., H. Muguruma, and I. Karube. 1996. A novel method of immobilizing antibodies on a quartz crystal microbalance using plasma-polymerized films for immunosensors. Analytical Chemistry 68:1696-700.
- Mutlu, S, R. Saber, C. Koçum, and E. Pişkin. 1999. An immunosensor: Immobilisation of Anti-HBs antibody on glow-discharge treated piezoelectric quartz crystal for HBs-Ag detection. Analytical Letters 32(2):317-22.
- Wu, Z., Y. Yan, G. Shen, and R. Yu. 2000. A novel approach of antibody immobilization based on n-butylamine plasma-polymerized films for sensors. Analytica Chimica Acta 412:29-35.
- Mutlu, S., D. Çökeliler, A. Shard, H. Goktas, B. Ozansoy, and M. Mutlu. 2008. Preparation and characterization of ethylenediamine and cysteamine plasma polymerized films on piezoelectric quartz crystal surfacesfor abiosensor. Thin Solid Films 516:1249-55.
- Chen, K., C. Chen, H. Lin, T. Yan, and C. Tseng. 2007. A novel technique to immobilize DNA on surface of a quartz crystal microbalance by plasma treatment and graft polymerization. Materials Science and Engineering 27(4):716-24.
- Karamollaoğlu, I., H.A. Öktem, and M. Mutlu. 2009. QCM-based DNA biosensor for detection of genetically modified organisms (GMOs). Biochemical Engineering Journal 44(2-3):142-50.
- Kaleli Can, G., Özgüzar, H.F., Kabay, G., Kömürcü, P., and Mutlu, M.: Simultaneous insulation and modification of quartz tuning fork surface by single-step plasma polymerization technique with amine-rich precursors. MRS Commun. 8, 541–549 (2018).
- Özgüzar, H. F., Can, G. K., Kabay, G., & Mutlu, M. (2019). Quartz tuning fork as a mass sensitive biosensor platform with a bi-layer film modification via plasma polymerization. MRS Communications, 1-9.
- Akdoğan, E., D. Çökeliler, L. Marcinauskas, P. Valatkevicius, V. Valincius, and M. Mutlu. 2006. A new method for immunosensor preparation: Atmospheric plasma torch. Surface and Coatings Technology 201(6):2540-46.
- Xiaodi, S., F.T. Chew, and S.F.Y. Li. 2000. Design and application of piezoelectric quartz crystal-based immunaassay. Analytical Sciences 16:107-14.
- Richard, F.T., and S.S. Jerome. 1996. Handbook of Chemical and Biochemical Sensors. Washington D.C: Institute of Physics Publishing.
- Ballantine, D.S., R.M. White, S.J. Martin et al. 1997. Acoustic Wave Sensors: Theory, Design and Physico-Chemical Application. Academic Press.
- Janshoff, A., H.J. Galla, and C. Steinem. 2000. Piezoelectric mass-sensing devices as biosensors - An alternative to optical biosensors? Angewandte Chemie International Edition 39:4004-32.
- Lu, F., H.P. Lee, and S.P. Lima. 2004. Quartz crystal microbalance with rigid mass partially attached on electrode surfaces. Sensors and Actuators A 112:203-10.
- Sauerbrey, G. 1959. The use of quartz oscillators for weighing thin films and for microweighing. Zeitschrift für Physik 206-22.
- Bruckenstein, R., and M. Shay. 1985. Experimental aspects of use of the quartz crystal microbalance in solution. Electrochimica Acta 30:1295-300.
- Kanazawa, K.K., and J.G. Gordon. 1985. Frequency of a quartz microbalance in contact with liquid. Analytical Chemistry 57:1770-1.
- Castellanos-Gomez, A., Agraït, N., Rubio-Bollinger, G., 2010. Carbon fibre tips for scanning probe microscopy based on quartz tuning fork force sensors. Nanotechnology, 2010, 21, 145702.
- Heyde, M., Kulawik, M, Rust, H.-P., Freund, H.-J., y.y. Double quartz tuning fork sensor for low temperature atomic force and scanning tunneling microscopy y.y.
- Labardi, M., 2007. Dynamic force microscopy with quartz tuning forks at high oscillation amplitudes. Nanotechnology, 2007, 18, 084019.
- Song, S.-H., 2009. Electrical characterization of a tuning fork crystal oscillator using dual-phase lock-in technique. Rev. Sci. Instrum., 2009, 80, 034703.
- Yang, C.H., Chang, T.H., Yang, M.J., Moore, W.J., 2002. A low noise transimpedance amplifier for cryogenically cooled quartz tuning fork force sensors. Rev. Sci. Instrum., 2002, 73, 2713–2716.
- Bettac, A., Koeble, J., Winkler, K., Uder, B., vd., 2009. QPlus: atomic force microscopy on single-crystal insulators with small oscillation amplitudes at 5 K. Nanotechnology, 2009, 20, 264009.
- Giessibl, F.J., 1998. High-speed force sensor for force microscopy and profilometry utilizing a quartz tuning fork. Appl. Phys. Lett., 1998, 73, 3956.
- Wastl, D.S., Weymouth, A.J., Giessibl, F.J., 2013. Optimizing atomic resolution of force microscopy in ambient conditions. Phys. Rev. B, 2013, 87, 245415.
- Chen, Y., Li, Y., Shan, G., Zhang, Y., vd., 2018. Design and implementation of a novel horizontal AFM probe utilizing a quartz tuning fork. Int. J. Precis. Eng. Manuf., 2018, 19, 39–46.
- Friedt, J.-M., Carry, É., 2007. Introduction to the quartz tuning fork. Am. J. Phys., 2007, 75, 415–422.
- Su, X., Dai, C., Zhang, J., O’Shea, S.J., 2002. Quartz tuning fork biosensor. Biosens. Bioelectron., 2002, 17, 111–117.
- Yasuda, H., 1984. Plasma polymerization for protective coatings and composite membranes. J. Memb. Sci., 1984, 18, 273–284.
- Kamińska, A., Kaczmarek, H., Kowalonek, J., 2002. The influence of side groups and polarity of polymers on the kind and effectiveness of their surface modification by air plasma action. Eur. Polym. J., 2002, 38, 1915–1919.
- Mändl, S., Rauschenbach, B., 2000. Plasma-Immersions-Ionenimplantation. Ein neues Verfahren zur homogenen Oberflächenmodifizierung komplex geformter medizinischer Implantate - Plasma Immersion Ion Implantation. New Technology for Homogeneous Modification of the Surface of Medical Implants . Biomed. Tech. Eng., 2000, 45, 193–198.
Plasma Polymerized Films for Mass Sensitive Biosensors
Year 2019,
, 1 - 7, 30.06.2019
Gizem Kaleli Can
,
Selma Mutlu
,
Mehmet Mutlu
Abstract
Mass sensitive biosensors represent promising tool that used in many areas such asbiomedical applications, food, environmental, military and in other fields instead of conventional methods. However, surface modifications are needed to design this rapid and reliable sensors. Plasma polymerization is a commonly used technology which offers easily-controllable, environmentally friendly, and inexpensive processing of various materials when compared to the wet chemical methods. This review includes working principle of mass sensitive biosensors, surface modification of piezoelectric crystals by plasma technology and applications of these crystals as a mass sensitive biosensor in biomedical applications.
References
- Mutlu S., 2011. Mass Sensitive Biosensors: Principles and Applications in Food in: Mutlu M. (Ed.), Biosensors in Food Processing, Safety, and Quality Control. Taylor and Francis, CRC Press, New York, pp. 71-89.
- Ricci, F., G. Volpe, L. Micheli, and G. Palleschi. 2007. A review on novel developments and applications of immunosensors in food analysis. Analytica Chimica Acta 605:111-29.
- Kurosawa, S., E. Tawara, N. Kamo, and Y. Kobatake. 1990. Oscillating frequency of piezo-electric quartz crystal in solutions. Analytica Chimica Acta 230:41-49.
- Muratsugu, M., F. Ohta, Y. Miya et al. 1993. Quartz Crystal Microbalance for the Detection of microgram quantities of Human Serum Albumin: Relationship between the frequency change and the mass of protein adsorbed. Analytical Chemistry 65(20):2933-37.
- Kaleli Can, G.: Development of QTF-Based Mass Sensitive Immunosensor for Phenylketonuria Diagnosis.(TOBB University of Economics and Technology, ANKARA, 2018)
- Alp, B., Mutlu, S., Mutlu, M., 2000. Food research international. 33(2), 107-112.
- Jenik, M., Seifner, A., Lieberzeit, P., Dickert, F.L., 2009. Analytical and bioanalytical chemistry. 394(2), 523-528
- Koshets, I., Kazantseva, Z., Shirshov, Y.M., 2003. Semiconductor physics quantum electronics and optoelectronics. 6(4), 505-507.
- Öztürk, K., Durusoy, M., Pişkin, E., 2008. Journal of Bioactive and Compatible Polymers. 23(6), 579-593.
- Rodoplu, D., Sen, Y., Mutlu, M., 2013. Nanoscience and Nanotechnology Letters. 5(4), 444- 451.
- Tsai, W.-B., Chien, C.-Y., Thissen, H., Lai, J.-Y., 2011. Acta biomaterialia. 7(6), 2518-2525.
- Zhang, C., Cappleman, B., Defibaugh‐Chavez, M., Weinkauf, D., 2003. Journal of Polymer Science Part B: Polymer Physics. 41(18), 2109-2118.
- Kabay, G., Can, G. K., & Mutlu, M. (2017). Amyloid-like protein nanofibrous membranes as a sensing layer infrastructure for the design of mass-sensitive biosensors. Biosensors and Bioelectronics, 97, 285-291.
- Park, I.S., Kim N., 1998. Biosensors and Bioelectronics. 13(10):1091-97.
- Park, I.S., Kim D. K., Adanyi N., Varadi M., Kim. N., 2004. Biosensors and Bioelectronics. 19(7):667-74.
- Nakanishi K., H. Muguruma, and I. Karube. 1996. A novel method of immobilizing antibodies on a quartz crystal microbalance using plasma-polymerized films for immunosensors. Analytical Chemistry 68:1696-700.
- Mutlu, S, R. Saber, C. Koçum, and E. Pişkin. 1999. An immunosensor: Immobilisation of Anti-HBs antibody on glow-discharge treated piezoelectric quartz crystal for HBs-Ag detection. Analytical Letters 32(2):317-22.
- Wu, Z., Y. Yan, G. Shen, and R. Yu. 2000. A novel approach of antibody immobilization based on n-butylamine plasma-polymerized films for sensors. Analytica Chimica Acta 412:29-35.
- Mutlu, S., D. Çökeliler, A. Shard, H. Goktas, B. Ozansoy, and M. Mutlu. 2008. Preparation and characterization of ethylenediamine and cysteamine plasma polymerized films on piezoelectric quartz crystal surfacesfor abiosensor. Thin Solid Films 516:1249-55.
- Chen, K., C. Chen, H. Lin, T. Yan, and C. Tseng. 2007. A novel technique to immobilize DNA on surface of a quartz crystal microbalance by plasma treatment and graft polymerization. Materials Science and Engineering 27(4):716-24.
- Karamollaoğlu, I., H.A. Öktem, and M. Mutlu. 2009. QCM-based DNA biosensor for detection of genetically modified organisms (GMOs). Biochemical Engineering Journal 44(2-3):142-50.
- Kaleli Can, G., Özgüzar, H.F., Kabay, G., Kömürcü, P., and Mutlu, M.: Simultaneous insulation and modification of quartz tuning fork surface by single-step plasma polymerization technique with amine-rich precursors. MRS Commun. 8, 541–549 (2018).
- Özgüzar, H. F., Can, G. K., Kabay, G., & Mutlu, M. (2019). Quartz tuning fork as a mass sensitive biosensor platform with a bi-layer film modification via plasma polymerization. MRS Communications, 1-9.
- Akdoğan, E., D. Çökeliler, L. Marcinauskas, P. Valatkevicius, V. Valincius, and M. Mutlu. 2006. A new method for immunosensor preparation: Atmospheric plasma torch. Surface and Coatings Technology 201(6):2540-46.
- Xiaodi, S., F.T. Chew, and S.F.Y. Li. 2000. Design and application of piezoelectric quartz crystal-based immunaassay. Analytical Sciences 16:107-14.
- Richard, F.T., and S.S. Jerome. 1996. Handbook of Chemical and Biochemical Sensors. Washington D.C: Institute of Physics Publishing.
- Ballantine, D.S., R.M. White, S.J. Martin et al. 1997. Acoustic Wave Sensors: Theory, Design and Physico-Chemical Application. Academic Press.
- Janshoff, A., H.J. Galla, and C. Steinem. 2000. Piezoelectric mass-sensing devices as biosensors - An alternative to optical biosensors? Angewandte Chemie International Edition 39:4004-32.
- Lu, F., H.P. Lee, and S.P. Lima. 2004. Quartz crystal microbalance with rigid mass partially attached on electrode surfaces. Sensors and Actuators A 112:203-10.
- Sauerbrey, G. 1959. The use of quartz oscillators for weighing thin films and for microweighing. Zeitschrift für Physik 206-22.
- Bruckenstein, R., and M. Shay. 1985. Experimental aspects of use of the quartz crystal microbalance in solution. Electrochimica Acta 30:1295-300.
- Kanazawa, K.K., and J.G. Gordon. 1985. Frequency of a quartz microbalance in contact with liquid. Analytical Chemistry 57:1770-1.
- Castellanos-Gomez, A., Agraït, N., Rubio-Bollinger, G., 2010. Carbon fibre tips for scanning probe microscopy based on quartz tuning fork force sensors. Nanotechnology, 2010, 21, 145702.
- Heyde, M., Kulawik, M, Rust, H.-P., Freund, H.-J., y.y. Double quartz tuning fork sensor for low temperature atomic force and scanning tunneling microscopy y.y.
- Labardi, M., 2007. Dynamic force microscopy with quartz tuning forks at high oscillation amplitudes. Nanotechnology, 2007, 18, 084019.
- Song, S.-H., 2009. Electrical characterization of a tuning fork crystal oscillator using dual-phase lock-in technique. Rev. Sci. Instrum., 2009, 80, 034703.
- Yang, C.H., Chang, T.H., Yang, M.J., Moore, W.J., 2002. A low noise transimpedance amplifier for cryogenically cooled quartz tuning fork force sensors. Rev. Sci. Instrum., 2002, 73, 2713–2716.
- Bettac, A., Koeble, J., Winkler, K., Uder, B., vd., 2009. QPlus: atomic force microscopy on single-crystal insulators with small oscillation amplitudes at 5 K. Nanotechnology, 2009, 20, 264009.
- Giessibl, F.J., 1998. High-speed force sensor for force microscopy and profilometry utilizing a quartz tuning fork. Appl. Phys. Lett., 1998, 73, 3956.
- Wastl, D.S., Weymouth, A.J., Giessibl, F.J., 2013. Optimizing atomic resolution of force microscopy in ambient conditions. Phys. Rev. B, 2013, 87, 245415.
- Chen, Y., Li, Y., Shan, G., Zhang, Y., vd., 2018. Design and implementation of a novel horizontal AFM probe utilizing a quartz tuning fork. Int. J. Precis. Eng. Manuf., 2018, 19, 39–46.
- Friedt, J.-M., Carry, É., 2007. Introduction to the quartz tuning fork. Am. J. Phys., 2007, 75, 415–422.
- Su, X., Dai, C., Zhang, J., O’Shea, S.J., 2002. Quartz tuning fork biosensor. Biosens. Bioelectron., 2002, 17, 111–117.
- Yasuda, H., 1984. Plasma polymerization for protective coatings and composite membranes. J. Memb. Sci., 1984, 18, 273–284.
- Kamińska, A., Kaczmarek, H., Kowalonek, J., 2002. The influence of side groups and polarity of polymers on the kind and effectiveness of their surface modification by air plasma action. Eur. Polym. J., 2002, 38, 1915–1919.
- Mändl, S., Rauschenbach, B., 2000. Plasma-Immersions-Ionenimplantation. Ein neues Verfahren zur homogenen Oberflächenmodifizierung komplex geformter medizinischer Implantate - Plasma Immersion Ion Implantation. New Technology for Homogeneous Modification of the Surface of Medical Implants . Biomed. Tech. Eng., 2000, 45, 193–198.