Review
BibTex RIS Cite
Year 2020, , 1 - 12, 25.12.2020
https://doi.org/10.38061/idunas.754647

Abstract

References

  • Ach, J.S., Lüttenberg, B. Ethical Aspects of ICT Implants in the Human Body. Opinion of the European Group on Ethics in Science and New Technologies to the European Commision. (2008). In: Nanobiotechnology, Nanomedicine and Human Enhancement. Eds: Ach, J.S., Lüttenberg, B. LIT Verlag Münster. 157-186.
  • Bean, B.P. (2007). The action potential in mammalian central neurons. Nature Reviews Neuroscience. 8, 451-465.
  • Berger, M. (2017). Nanotechnology for neuroscience. https://www.nanowerk.com/spotlight/spotid=48348.php
  • Brown, G.C., Vilalta, A. (2015). How microglia kills neurons. Brain Research. 1628, 288-297.
  • Calvello T. Human Enhancement: Brain Chips (Neural Implants). (2013) https://humanenhancementusingbrainchips.weebly.com/neural-implants.html
  • Carballo-Molina, O.A., Velasco, I. (2015). Hydrogels as scaffolds and delivery systems to enhance axonal regeneration after injuries. Frontiers in Cellular Neuroscience. 9, 13.
  • Carrillo-Vico, A., Lardone, P.J., Alvarez-Sanchez, N., Rodriguez-Rodriguez, A., Guerrero, J.M. (2013). Melatonin: buffering the immune system. International Journal of Molecular Sciences.14 (4), 8638-8683.
  • David, S., Kroner, A., Greenhalgh, A.D., Zarruk, J.G., Lopez-Vales, R.J. (2018). Myeloid cell responses after spinal cord injury. Neuroimmunology. 321, 97-108.
  • Diamond, M.C., Scheibel, A.B., Murphy, G.M. Jr., Harvey, T. (2017). On the Brain of a Scientist: Albert Einstein. Experimental Neurology. 88, 198-204.
  • Elsayed, M., Magistretti, P.J. (2015). A New Outlook on Mental Illnesses: Glial Involvement Beyond the Glue. Frontiers in Cellular Neuroscience. 9, 468.
  • Ereifej, E.S., Rial, G.M., Hermann, J.K., Smith, C.S., Meade, S.M., Rayyan, J.M., Chen. (2018). Implantation of Neural Probes in the Brain Elicits Oxidative Stress. Frontiers in Bioengineering and Biotechnology. 6:9.
  • Gaillard A., Prestoz, L., Dumartin, B., Cantereau, M., Morel, F., Roger, M., Jaber, M. (2017). Reestablishment of damaged adult motor pathways by grafted embiyonic cortical neurons. Nature Neuroscience, 10 (10), 1294-1299.
  • Gaudet, A.D., Fonken, L.K. (2018). Glial Cells Shape Pathology and Repair After Spinal Cord Injury. Neurotherapeutics. 15 (3), 554-577.
  • George, J., Hsu, C., Nguyen, L.T.B., Ye, H., Cui, Z. (2019). Neural tissue engineering with structured hydrogels in CNS models and therapies. Biotechnology Advances. 03, 009.
  • Green, R., Abidian, M.R. (2015). Conducting polymers for neural prosthetic and neural interface applications. Advanced Materials. 27 (46), 7620-7637.
  • Heiss, W.D., Graf, R., Fujita, T., Ohta, K., Bauer, B., Löttgen, J., Wienhard, K. (1997). Early detection of irreversibly damaged ischemic tissue by flumazenil positron emission tomography in cats. Stroke. 28, 2045–2051.
  • Hu, X, Leak, R.K., Shi, Y., Suenaga, J., Gao, Y., Zheng, P., Chen, J. (2015). Microglial and macrophage polarization – new prospects for brain repair. Nature Reviews Neurology. 11, 56.
  • Jessen, K.R., Mirsky, R., Lloyd, A.C. (2015). Schwann cells: development and role in nerve repair. Cold Spring Harbor Perspectives in Biology. 7.
  • Kim, J.K., Shin, Y.J., Ha, L.J., Kim, D.H., Kim, D.H. (2019). Unraveling the Mechanobiology of the Immune System. Advanced Healthcare Materials. 8 (4), e1801332.
  • Kipnis, J., Filiano, A.J. (2017). The central nervous system: privileged by immune connections. Nature Reviews Immunology. 18, 83-84.
  • Koopman, G., Reutelingsperger, C.P., Kuijten, G.A., Keehnen, R.M., Pals, S.T., van Oers, M.H.J. (1994). Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood. 84, 1415-1420.
  • Kornev, V.A., Grebenik, E.A., Solovieva, A.B., Dmitriev, R.I., Timashev, T.S. (2018). Hydrogel-assisted neuroregeneration approaches towards brain injury therapy: A state-of-the-art review. Computational and Structural Biotechnology Journal. 16, 488-502.
  • Koss, K.M., Unsworth, L.D. (2016). Neural tissue engineering: bioresponsive nanoscaffolds using engineered self-assembling peptides. Acta Biomaterialia. 44, 2-15.
  • Koss, K.M., Churchward, M.A., Jeffery, A.F., Mushahwar, V.K., Elias, A.L., Todd, K.G. (2017). Improved 3D hydrogel cultures of primary glial cells for in vitro modelling of neuroinflammation. Journal of Visualized Experiments. 1-11.
  • Leung, B.K., Biran, R., Underwood, C.J., Tresco, P.A. (2008). Characterization of microglial attachment and cytokine release on biomaterials of differing surface chemistry. Biomaterials. 29, 3289-3297.
  • Li, T., Wang, P., Wang, S.C., Wang, Y.F. (2017). Approaches mediating Oxytocin Regulation of the Immune System. Frontiers in Immunology. 7, 693.
  • Louveau, A., Harris, T.H., Kipnis, J. (2015). Revisiting the mechanisms of CNS immune privilege. Trends in Immunology. 36 (10), 569-577. Neher, J.J., Neniskyte, U., Brown, G.C. (2012). Primary phagocytosis of neurons by inflamed microglia: potential roles in neurodegeneration. Frontiers in Pharmacology. 3.
  • Nguyen, J.K., Park, D.J., Skousen, J.L., Hess-Dunning, A.E., Tyler, D.J., Rowan, S.J., Weder, C., Cpadona, J.R. (2014). Mechanically-compliant intrasortical implants reduce the neuroinflammatory response. Journal of Neural Engineering. 11 (5).
  • Nolta, N.F., Christensen, M.B., Crane, P.D., Skousen, J.L., Tresco, P.A. (2015). BBB leakage, astrogliosis, and tissue loss correlate with silicon microelectrode array recording performance. Biomaterials. 53, 753-762.
  • Pascual, B., Prieto, E., Arbizu, J., Marti-Climent, J.M., Peñuelas, I., Quincoces, G., Zarauza, R., Pappata, S., Masdeu, J.C. (2012). Decreased carbon-11-flumazenil binding in early Alzheimer’s disease. Brain. 135, 2817-2825.
  • Polikov, V.S., Block, M.L., Fellous, J.M., Hong, J.S., Reichert, W.M. (2006). In vitro model of glial scarring around neuroelectrodes chronically implanted in the CNS. Biomaterials. 27, 5368-5376.
  • Prinz, M., Priller, J. (2014). Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nature Reviews Neuroscience. 15 (5), 300-312.
  • Prochazka A. (2017). Biology of Neuroengineering Interfaces-Neurophysiology and neural engineering: a review. Journal of Neurophysiology. 118 (2), 1292-1309.
  • Pulli, B., Chen, J.W. (2014). Imaging Neuroinflammation-from Bench to Bedside. Journal of Clinical and Cellular Immunology. 5, 226.
  • Ramesh, G., MacLEan, A.G., Phillipp, M.T. (2013). Cytokines and chemokines at the crosroads of neuroinflammation, neurodegeneration, and neuropathic pain. Mediators Inflammation. 480739.
  • Sette, G., Baron, J.C., Young, A.R., Miyazawa, H., Tillet, I., Barre, L., Travere, J.M., Derlon, J.M., MacKenzie, E.T. (1993). In vivo mapping of brain benzodiazepine receptor changes by positron emission tomography after focal ischemia in the anesthetized baboon. Stroke. 24, 2046-2057.
  • Shahid, M., Khan, H.M., Mustafa, S., Shujaatullah, F. (2009). Nanotechnology: Implications of nanoparticles in medical science. In: Biotechnology Emerging Trends. Eds: Sayyed RZ, Patil AS. Scientific Publishers. pp. 529-550.
  • Sochocka, M., Diniz, B.S., Leszek, J. (2017). Inflammatory response in the CNS: Friend or Foe? Molecular Neurobiology. 54 (10), 8071-8089.
  • Thelin, J., Jörntell, H., Psouni, E., Garwicz, M., Schouenborg, J., Danielsen, N., Linsmeier, C.E. (2011). Implant size and fixation mode strongly influence tissue reactions in the CNS. PLoS One. 6.
  • ThyagaRajan, S., Priyanka, H.P. (2012). Bidirectional communication between the neuroendocrine system and the immune system: relevance to health and diseases. Annals of Neurosciences. 19 (1), 40-46.
  • Tsui, C., Koss, K., Churchward, M.A., Todd, K.G. (2019). Biomaterials and glia: Progress on designs to modulate neuroinflammation. Acta Biomaterialia. 83, 13-28.
  • Vassanelli, S., Mahmud, M. (2016). Trends and challenges in neuroengineering: toward “intelligent” neuroprotheses through brain-“brain inspired systems” communication. Frontiers in neuroscience. 10, 438.
  • Vidu, R., Rahman, M., Mahmoudi, M., Enaschescu, M., Poteca, D.T., Opris, I. (2015). Nanostructures: a platform for brain repair and augmentation. Frontiers in Systems Neuroscience. 8, 91.
  • Walker, G.M., Ramsey, J.M., Cavin, R.K., Herr, D.J.C., Merzbacher, C.I., Zhirnov, V. (2009). https://www.nist.gov/system/files/documents/pml/div683/bioelectronics_report.pdf
  • Xue, D., Zhao, M., Wang, Y.J., Wang, L., Yang, Y., Wang, S.W., Zhang, R., Zhao, Y., Liu, R.T. (2012). A multifunctional peptide rescues memory deficits in Alzheimer's disease transgenic mice by inhibiting Aβ42-induced cytotoxicity and increasing microglial phagocytosis. Neurobiology of Disease. 46 (3), 701-709.
  • Yılmaz B, Yılmaz F. (2017). Lab-on-a-chip technology and its application. In: Omics Technologies and Bioengineering. Eds: Brah D, Azevedo V. Elsevier. pp. 145-153.

A NOVEL HYBRID: NEURO-IMMUNO-ENGINEERING

Year 2020, , 1 - 12, 25.12.2020
https://doi.org/10.38061/idunas.754647

Abstract

Although the central nervous system has been known as immune-privileged for many decades, the psycho-neuro-endocrine-immune relationships studied in integrity, in recent years has opened a new era called neuro-immunology. Illumination of the bi-directional cross-talk between immune and central nervous systems, both of which are of cardinal importance for homeostasis, survival, progress and wellbeing, and, is highly expected to provide an integrated understanding of neuropathological and degenerative processes. Bioengineering is another novel inter-discipline, which has been developing with great momentum recently. Adaptability, ownership, and mastery of the recipient and the durability and optimal performance of the devices used, seem to be the outmost priority requirement for success. In the context of translational medicine, collaboration between medicine with bioengineering, systems engineering, and material science is definitely the first inevitable requirement for survival and progressive development in the next century.

References

  • Ach, J.S., Lüttenberg, B. Ethical Aspects of ICT Implants in the Human Body. Opinion of the European Group on Ethics in Science and New Technologies to the European Commision. (2008). In: Nanobiotechnology, Nanomedicine and Human Enhancement. Eds: Ach, J.S., Lüttenberg, B. LIT Verlag Münster. 157-186.
  • Bean, B.P. (2007). The action potential in mammalian central neurons. Nature Reviews Neuroscience. 8, 451-465.
  • Berger, M. (2017). Nanotechnology for neuroscience. https://www.nanowerk.com/spotlight/spotid=48348.php
  • Brown, G.C., Vilalta, A. (2015). How microglia kills neurons. Brain Research. 1628, 288-297.
  • Calvello T. Human Enhancement: Brain Chips (Neural Implants). (2013) https://humanenhancementusingbrainchips.weebly.com/neural-implants.html
  • Carballo-Molina, O.A., Velasco, I. (2015). Hydrogels as scaffolds and delivery systems to enhance axonal regeneration after injuries. Frontiers in Cellular Neuroscience. 9, 13.
  • Carrillo-Vico, A., Lardone, P.J., Alvarez-Sanchez, N., Rodriguez-Rodriguez, A., Guerrero, J.M. (2013). Melatonin: buffering the immune system. International Journal of Molecular Sciences.14 (4), 8638-8683.
  • David, S., Kroner, A., Greenhalgh, A.D., Zarruk, J.G., Lopez-Vales, R.J. (2018). Myeloid cell responses after spinal cord injury. Neuroimmunology. 321, 97-108.
  • Diamond, M.C., Scheibel, A.B., Murphy, G.M. Jr., Harvey, T. (2017). On the Brain of a Scientist: Albert Einstein. Experimental Neurology. 88, 198-204.
  • Elsayed, M., Magistretti, P.J. (2015). A New Outlook on Mental Illnesses: Glial Involvement Beyond the Glue. Frontiers in Cellular Neuroscience. 9, 468.
  • Ereifej, E.S., Rial, G.M., Hermann, J.K., Smith, C.S., Meade, S.M., Rayyan, J.M., Chen. (2018). Implantation of Neural Probes in the Brain Elicits Oxidative Stress. Frontiers in Bioengineering and Biotechnology. 6:9.
  • Gaillard A., Prestoz, L., Dumartin, B., Cantereau, M., Morel, F., Roger, M., Jaber, M. (2017). Reestablishment of damaged adult motor pathways by grafted embiyonic cortical neurons. Nature Neuroscience, 10 (10), 1294-1299.
  • Gaudet, A.D., Fonken, L.K. (2018). Glial Cells Shape Pathology and Repair After Spinal Cord Injury. Neurotherapeutics. 15 (3), 554-577.
  • George, J., Hsu, C., Nguyen, L.T.B., Ye, H., Cui, Z. (2019). Neural tissue engineering with structured hydrogels in CNS models and therapies. Biotechnology Advances. 03, 009.
  • Green, R., Abidian, M.R. (2015). Conducting polymers for neural prosthetic and neural interface applications. Advanced Materials. 27 (46), 7620-7637.
  • Heiss, W.D., Graf, R., Fujita, T., Ohta, K., Bauer, B., Löttgen, J., Wienhard, K. (1997). Early detection of irreversibly damaged ischemic tissue by flumazenil positron emission tomography in cats. Stroke. 28, 2045–2051.
  • Hu, X, Leak, R.K., Shi, Y., Suenaga, J., Gao, Y., Zheng, P., Chen, J. (2015). Microglial and macrophage polarization – new prospects for brain repair. Nature Reviews Neurology. 11, 56.
  • Jessen, K.R., Mirsky, R., Lloyd, A.C. (2015). Schwann cells: development and role in nerve repair. Cold Spring Harbor Perspectives in Biology. 7.
  • Kim, J.K., Shin, Y.J., Ha, L.J., Kim, D.H., Kim, D.H. (2019). Unraveling the Mechanobiology of the Immune System. Advanced Healthcare Materials. 8 (4), e1801332.
  • Kipnis, J., Filiano, A.J. (2017). The central nervous system: privileged by immune connections. Nature Reviews Immunology. 18, 83-84.
  • Koopman, G., Reutelingsperger, C.P., Kuijten, G.A., Keehnen, R.M., Pals, S.T., van Oers, M.H.J. (1994). Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood. 84, 1415-1420.
  • Kornev, V.A., Grebenik, E.A., Solovieva, A.B., Dmitriev, R.I., Timashev, T.S. (2018). Hydrogel-assisted neuroregeneration approaches towards brain injury therapy: A state-of-the-art review. Computational and Structural Biotechnology Journal. 16, 488-502.
  • Koss, K.M., Unsworth, L.D. (2016). Neural tissue engineering: bioresponsive nanoscaffolds using engineered self-assembling peptides. Acta Biomaterialia. 44, 2-15.
  • Koss, K.M., Churchward, M.A., Jeffery, A.F., Mushahwar, V.K., Elias, A.L., Todd, K.G. (2017). Improved 3D hydrogel cultures of primary glial cells for in vitro modelling of neuroinflammation. Journal of Visualized Experiments. 1-11.
  • Leung, B.K., Biran, R., Underwood, C.J., Tresco, P.A. (2008). Characterization of microglial attachment and cytokine release on biomaterials of differing surface chemistry. Biomaterials. 29, 3289-3297.
  • Li, T., Wang, P., Wang, S.C., Wang, Y.F. (2017). Approaches mediating Oxytocin Regulation of the Immune System. Frontiers in Immunology. 7, 693.
  • Louveau, A., Harris, T.H., Kipnis, J. (2015). Revisiting the mechanisms of CNS immune privilege. Trends in Immunology. 36 (10), 569-577. Neher, J.J., Neniskyte, U., Brown, G.C. (2012). Primary phagocytosis of neurons by inflamed microglia: potential roles in neurodegeneration. Frontiers in Pharmacology. 3.
  • Nguyen, J.K., Park, D.J., Skousen, J.L., Hess-Dunning, A.E., Tyler, D.J., Rowan, S.J., Weder, C., Cpadona, J.R. (2014). Mechanically-compliant intrasortical implants reduce the neuroinflammatory response. Journal of Neural Engineering. 11 (5).
  • Nolta, N.F., Christensen, M.B., Crane, P.D., Skousen, J.L., Tresco, P.A. (2015). BBB leakage, astrogliosis, and tissue loss correlate with silicon microelectrode array recording performance. Biomaterials. 53, 753-762.
  • Pascual, B., Prieto, E., Arbizu, J., Marti-Climent, J.M., Peñuelas, I., Quincoces, G., Zarauza, R., Pappata, S., Masdeu, J.C. (2012). Decreased carbon-11-flumazenil binding in early Alzheimer’s disease. Brain. 135, 2817-2825.
  • Polikov, V.S., Block, M.L., Fellous, J.M., Hong, J.S., Reichert, W.M. (2006). In vitro model of glial scarring around neuroelectrodes chronically implanted in the CNS. Biomaterials. 27, 5368-5376.
  • Prinz, M., Priller, J. (2014). Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nature Reviews Neuroscience. 15 (5), 300-312.
  • Prochazka A. (2017). Biology of Neuroengineering Interfaces-Neurophysiology and neural engineering: a review. Journal of Neurophysiology. 118 (2), 1292-1309.
  • Pulli, B., Chen, J.W. (2014). Imaging Neuroinflammation-from Bench to Bedside. Journal of Clinical and Cellular Immunology. 5, 226.
  • Ramesh, G., MacLEan, A.G., Phillipp, M.T. (2013). Cytokines and chemokines at the crosroads of neuroinflammation, neurodegeneration, and neuropathic pain. Mediators Inflammation. 480739.
  • Sette, G., Baron, J.C., Young, A.R., Miyazawa, H., Tillet, I., Barre, L., Travere, J.M., Derlon, J.M., MacKenzie, E.T. (1993). In vivo mapping of brain benzodiazepine receptor changes by positron emission tomography after focal ischemia in the anesthetized baboon. Stroke. 24, 2046-2057.
  • Shahid, M., Khan, H.M., Mustafa, S., Shujaatullah, F. (2009). Nanotechnology: Implications of nanoparticles in medical science. In: Biotechnology Emerging Trends. Eds: Sayyed RZ, Patil AS. Scientific Publishers. pp. 529-550.
  • Sochocka, M., Diniz, B.S., Leszek, J. (2017). Inflammatory response in the CNS: Friend or Foe? Molecular Neurobiology. 54 (10), 8071-8089.
  • Thelin, J., Jörntell, H., Psouni, E., Garwicz, M., Schouenborg, J., Danielsen, N., Linsmeier, C.E. (2011). Implant size and fixation mode strongly influence tissue reactions in the CNS. PLoS One. 6.
  • ThyagaRajan, S., Priyanka, H.P. (2012). Bidirectional communication between the neuroendocrine system and the immune system: relevance to health and diseases. Annals of Neurosciences. 19 (1), 40-46.
  • Tsui, C., Koss, K., Churchward, M.A., Todd, K.G. (2019). Biomaterials and glia: Progress on designs to modulate neuroinflammation. Acta Biomaterialia. 83, 13-28.
  • Vassanelli, S., Mahmud, M. (2016). Trends and challenges in neuroengineering: toward “intelligent” neuroprotheses through brain-“brain inspired systems” communication. Frontiers in neuroscience. 10, 438.
  • Vidu, R., Rahman, M., Mahmoudi, M., Enaschescu, M., Poteca, D.T., Opris, I. (2015). Nanostructures: a platform for brain repair and augmentation. Frontiers in Systems Neuroscience. 8, 91.
  • Walker, G.M., Ramsey, J.M., Cavin, R.K., Herr, D.J.C., Merzbacher, C.I., Zhirnov, V. (2009). https://www.nist.gov/system/files/documents/pml/div683/bioelectronics_report.pdf
  • Xue, D., Zhao, M., Wang, Y.J., Wang, L., Yang, Y., Wang, S.W., Zhang, R., Zhao, Y., Liu, R.T. (2012). A multifunctional peptide rescues memory deficits in Alzheimer's disease transgenic mice by inhibiting Aβ42-induced cytotoxicity and increasing microglial phagocytosis. Neurobiology of Disease. 46 (3), 701-709.
  • Yılmaz B, Yılmaz F. (2017). Lab-on-a-chip technology and its application. In: Omics Technologies and Bioengineering. Eds: Brah D, Azevedo V. Elsevier. pp. 145-153.
There are 46 citations in total.

Details

Primary Language English
Journal Section Derlemeler
Authors

Latife Arzu Aral 0000-0002-7300-1624

Gönül Ö. Peker This is me 0000-0001-9717-707X

Publication Date December 25, 2020
Acceptance Date December 1, 2020
Published in Issue Year 2020

Cite

APA Aral, L. A., & Peker, G. Ö. (2020). A NOVEL HYBRID: NEURO-IMMUNO-ENGINEERING. Natural and Applied Sciences Journal, 3(2), 1-12. https://doi.org/10.38061/idunas.754647