Research Article
BibTex RIS Cite

The effect of $S$-accr on intermediate rings between certain pairs of rings

Year 2022, , 101 - 128, 16.07.2022
https://doi.org/10.24330/ieja.1096895

Abstract

The rings considered in this article are commutative with identity and the modules are assumed to be unitary. If $R$ is a subring of a ring $T$, then it is assumed that $R$ contains the identity element of $T$. Let $S$ be a multiplicatively closed subset (m.c. subset) of a ring $R$. In this paper, we consider the concept of $S$-accr, the generalization by Hamed and Hizem of the notion of (accr) in module theory given by Lu. We say that $R$ satisfies (accr) if the increasing sequence of residuals of the form $(I:_{R}B)\subseteq (I:_{R}B^{2})\subseteq (I:_{R}B^{3})\subseteq \cdots$ is stationary for any ideal $I$ of $R$ and for any finitely generated ideal $B$ of $R$. Focusing on certain pairs of rings $R\subseteq T$, the aim of this paper is to study whether $S$-accr on each intermediate ring $A$ between $R$ and $T$ for a suitable m.c. subset $S$ of $A$ (depending on $A$) implies that $A$ satisfies (accr) for each such $A$.

References

  • D. D. Anderson and T. Dumitrescu, $S$-Noetherian rings, Comm. Algebra, 30(9) (2002), 4407-4416.
  • M. F. Atiyah and I. G. MacDonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, Massachusetts, 1969.
  • N. Bourbaki, Commutative Algebra, Addison-Wesley, Reading, Massachusetts, 1972.
  • R. Gilmer, Integral dependence in power series rings, J. Algebra, 11 (1969), 488-502.
  • R. Gilmer and W. Heinzer, Finitely generated intermediate rings, J. Pure Appl. Algebra, 37(3) (1985), 237-264.
  • A. Hamed and S. Hizem, Modules satisfying $S$-Noetherian property and $S$-ACCR, Comm. Algebra, 44(5) (2016), 1941-1951.
  • A. Hamed and A. Malek, $S$-prime ideals of a commutative ring, Beitr. Algebra Geom., 61(3) (2020), 533-542.
  • W. Heinzer and D. Lantz, The Laskerian property in commutative rings, J. Algebra, 72(1) (1981), 101-114.
  • I. Kaplansky, Commutative Rings, The University of Chicago Press, Chicago, 1974.
  • C. P. Lu, Modules satisfying ACC on a certain type of colons, Pacific J. Math., 131(2) (1988), 303-318.
  • C. P. Lu, Modules and rings satisfying (accr), Proc. Amer. Math. Soc., 117(1) (1993), 5-10.
  • N. H. McCoy, Remarks on divisors of zero, Amer. Math. Monthly, 49 (1942), 286-295.
  • N. Radu, Sur les Anneaux Laskeriens, in: Proceedings of the Week of Algebraic Geometry, Bucharest, (1980), 158-163.
  • S. Visweswaran, Laskerian pairs, J. Pure Appl. Algebra, 59(1) (1989), 87-110.
  • S. Visweswaran, ACCR pairs, J. Pure Appl. Algebra, 81(3) (1992), 313-334.
  • S. Visweswaran, Some results on $S$-primary ideals of a commutative ring, Beitr Algebra Geom., (2021) https://doi.org/10.1007/s13366-021-00580-5.
  • S. Visweswaran and P. T. Lalchandani, Some results on modules satisfying $S$-strong accr$^{*}$, Arab J. Math. Sci., 25(2) (2019), 145-155.
  • A. R. Wadsworth, Pairs of domains where all intermediate domains are Noetherian, Trans. Amer. Math. Soc., 195 (1974), 201-211.
Year 2022, , 101 - 128, 16.07.2022
https://doi.org/10.24330/ieja.1096895

Abstract

References

  • D. D. Anderson and T. Dumitrescu, $S$-Noetherian rings, Comm. Algebra, 30(9) (2002), 4407-4416.
  • M. F. Atiyah and I. G. MacDonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, Massachusetts, 1969.
  • N. Bourbaki, Commutative Algebra, Addison-Wesley, Reading, Massachusetts, 1972.
  • R. Gilmer, Integral dependence in power series rings, J. Algebra, 11 (1969), 488-502.
  • R. Gilmer and W. Heinzer, Finitely generated intermediate rings, J. Pure Appl. Algebra, 37(3) (1985), 237-264.
  • A. Hamed and S. Hizem, Modules satisfying $S$-Noetherian property and $S$-ACCR, Comm. Algebra, 44(5) (2016), 1941-1951.
  • A. Hamed and A. Malek, $S$-prime ideals of a commutative ring, Beitr. Algebra Geom., 61(3) (2020), 533-542.
  • W. Heinzer and D. Lantz, The Laskerian property in commutative rings, J. Algebra, 72(1) (1981), 101-114.
  • I. Kaplansky, Commutative Rings, The University of Chicago Press, Chicago, 1974.
  • C. P. Lu, Modules satisfying ACC on a certain type of colons, Pacific J. Math., 131(2) (1988), 303-318.
  • C. P. Lu, Modules and rings satisfying (accr), Proc. Amer. Math. Soc., 117(1) (1993), 5-10.
  • N. H. McCoy, Remarks on divisors of zero, Amer. Math. Monthly, 49 (1942), 286-295.
  • N. Radu, Sur les Anneaux Laskeriens, in: Proceedings of the Week of Algebraic Geometry, Bucharest, (1980), 158-163.
  • S. Visweswaran, Laskerian pairs, J. Pure Appl. Algebra, 59(1) (1989), 87-110.
  • S. Visweswaran, ACCR pairs, J. Pure Appl. Algebra, 81(3) (1992), 313-334.
  • S. Visweswaran, Some results on $S$-primary ideals of a commutative ring, Beitr Algebra Geom., (2021) https://doi.org/10.1007/s13366-021-00580-5.
  • S. Visweswaran and P. T. Lalchandani, Some results on modules satisfying $S$-strong accr$^{*}$, Arab J. Math. Sci., 25(2) (2019), 145-155.
  • A. R. Wadsworth, Pairs of domains where all intermediate domains are Noetherian, Trans. Amer. Math. Soc., 195 (1974), 201-211.
There are 18 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Subramanian Vısweswaran This is me

Publication Date July 16, 2022
Published in Issue Year 2022

Cite

APA Vısweswaran, S. (2022). The effect of $S$-accr on intermediate rings between certain pairs of rings. International Electronic Journal of Algebra, 32(32), 101-128. https://doi.org/10.24330/ieja.1096895
AMA Vısweswaran S. The effect of $S$-accr on intermediate rings between certain pairs of rings. IEJA. July 2022;32(32):101-128. doi:10.24330/ieja.1096895
Chicago Vısweswaran, Subramanian. “The Effect of $S$-Accr on Intermediate Rings Between Certain Pairs of Rings”. International Electronic Journal of Algebra 32, no. 32 (July 2022): 101-28. https://doi.org/10.24330/ieja.1096895.
EndNote Vısweswaran S (July 1, 2022) The effect of $S$-accr on intermediate rings between certain pairs of rings. International Electronic Journal of Algebra 32 32 101–128.
IEEE S. Vısweswaran, “The effect of $S$-accr on intermediate rings between certain pairs of rings”, IEJA, vol. 32, no. 32, pp. 101–128, 2022, doi: 10.24330/ieja.1096895.
ISNAD Vısweswaran, Subramanian. “The Effect of $S$-Accr on Intermediate Rings Between Certain Pairs of Rings”. International Electronic Journal of Algebra 32/32 (July 2022), 101-128. https://doi.org/10.24330/ieja.1096895.
JAMA Vısweswaran S. The effect of $S$-accr on intermediate rings between certain pairs of rings. IEJA. 2022;32:101–128.
MLA Vısweswaran, Subramanian. “The Effect of $S$-Accr on Intermediate Rings Between Certain Pairs of Rings”. International Electronic Journal of Algebra, vol. 32, no. 32, 2022, pp. 101-28, doi:10.24330/ieja.1096895.
Vancouver Vısweswaran S. The effect of $S$-accr on intermediate rings between certain pairs of rings. IEJA. 2022;32(32):101-28.