Research Article
BibTex RIS Cite

Annihilator conditions with generalized skew derivations and Lie ideals of prime rings

Year 2022, , 192 - 216, 16.07.2022
https://doi.org/10.24330/ieja.1143810

Abstract

Let $R$ be a prime ring, $Q_r$ its right Martindale quotient ring, $L$ a non-central Lie ideal of $R$, $n\geq 1$ a fixed integer, $F$ and $G$ two generalized skew derivations of $R$ with the same associated automorphism, $p\in R$ a fixed element. If $p\bigl(F(x)F(y)-G(y)x\bigr)^n=0$, for any $x,y \in L$, then there exist $a,c\in Q_r$ such that $F(x)=ax$ and $G(x)=cx$, for any $x\in R$, with $pa=pc=0$, unless when $R$ satisfies the standard polynomial identity $s_4(x_1,\ldots,x_4)$.

References

  • J.-C. Chang, Annihilators of power values of a right generalized $(\alpha,\beta)$-derivation, Bull. Inst. Math. Acad. Sin., 4 (2009), 67-73.
  • J.-C. Chang, Generalized skew derivations with nilpotent values on Lie ideals, Monatsh. Math., 161 (2010), 155-160.
  • C.-L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc., 103 (1988), 723-728.
  • C.-L. Chuang, Differential identities with automorphisms and antiautomorphisms I, J. Algebra, 149 (1992), 371-404.
  • C.-L. Chuang, Differential identities with automorphisms and antiautomorphisms II, J. Algebra, 160 (1993), 130-171.
  • C.-L. Chuang, Identities with skew derivations, J. Algebra, 224 (2000), 292-335.
  • C.-L. Chuang, M.-C. Chou and C.-K. Liu, Skew derivations with annihilating Engel conditions, Publ. Math. Debrecen, 68 (2006), 161-170.
  • V. De Filippis, Annihilators of power values of generalized derivations on multilinear polynomials, Bull. Aust. Math. Soc., 80 (2009), 217-232.
  • V. De Filippis and O. M. Di Vincenzo, Vanishing derivations and centralizers of generalized derivations on multilinear polynomials, Comm. Algebra, 40 (2012), 1918-1932.
  • V. De Filippis and O. M. Di Vincenzo, Generalized skew derivations and nilpotent values on Lie ideals, Algebra Colloq., 26 (2019), 589-614.
  • V. De Filippis, N. Rehman and G. Scudo, Certain functional identities involving a pair of generalized skew derivations with nilpotent values on Lie ideals, pre-print.
  • O. M. Di Vincenzo, On the n-th centralizer of a Lie ideal, Boll. Un. Mat. Ital. A (7), 3 (1989), 77-85.
  • T. S. Erickson, W. S. Martindale III and J. M. Osborn, Prime nonassociative algebras, Pacific J. Math., 60 (1975), 49-63.
  • M. Eroğlu and N. Argaç, Power values of generalized skew derivations with annihilator conditions on Lie ideals, Bull. Iranian Math. Soc., 46 (2020), 1583-1598.
  • I. N. Herstein, Topics in Ring Theory, University of Chicago Press, Chicago, 1969.
  • N. Jacobson, Structure of Rings, Amer. Math. Soc., Providence, RI, 1964.
  • C. Lanski and S. Montgomery, Lie structure of prime rings of characteristic 2, Pacific J. Math., 42 (1) (1972), 117-136.
  • W. S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra, 12 (1969), 576-584.
  • R. K. Sharma, B. Dhara, V. De Filippis and C. Garg, A result concerning nilpotent values with generalized skew derivations on Lie ideals, Comm. Algebra, 46 (2018), 5330-5341.
  • N. Yarbil and N. Argaç, Annihilators of power values of generalized skew derivations on Lie ideals, Algebra and its applications, 307-316, De Gruyter Proc. Math., De Gruyter, Berlin, 2018.
Year 2022, , 192 - 216, 16.07.2022
https://doi.org/10.24330/ieja.1143810

Abstract

References

  • J.-C. Chang, Annihilators of power values of a right generalized $(\alpha,\beta)$-derivation, Bull. Inst. Math. Acad. Sin., 4 (2009), 67-73.
  • J.-C. Chang, Generalized skew derivations with nilpotent values on Lie ideals, Monatsh. Math., 161 (2010), 155-160.
  • C.-L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc., 103 (1988), 723-728.
  • C.-L. Chuang, Differential identities with automorphisms and antiautomorphisms I, J. Algebra, 149 (1992), 371-404.
  • C.-L. Chuang, Differential identities with automorphisms and antiautomorphisms II, J. Algebra, 160 (1993), 130-171.
  • C.-L. Chuang, Identities with skew derivations, J. Algebra, 224 (2000), 292-335.
  • C.-L. Chuang, M.-C. Chou and C.-K. Liu, Skew derivations with annihilating Engel conditions, Publ. Math. Debrecen, 68 (2006), 161-170.
  • V. De Filippis, Annihilators of power values of generalized derivations on multilinear polynomials, Bull. Aust. Math. Soc., 80 (2009), 217-232.
  • V. De Filippis and O. M. Di Vincenzo, Vanishing derivations and centralizers of generalized derivations on multilinear polynomials, Comm. Algebra, 40 (2012), 1918-1932.
  • V. De Filippis and O. M. Di Vincenzo, Generalized skew derivations and nilpotent values on Lie ideals, Algebra Colloq., 26 (2019), 589-614.
  • V. De Filippis, N. Rehman and G. Scudo, Certain functional identities involving a pair of generalized skew derivations with nilpotent values on Lie ideals, pre-print.
  • O. M. Di Vincenzo, On the n-th centralizer of a Lie ideal, Boll. Un. Mat. Ital. A (7), 3 (1989), 77-85.
  • T. S. Erickson, W. S. Martindale III and J. M. Osborn, Prime nonassociative algebras, Pacific J. Math., 60 (1975), 49-63.
  • M. Eroğlu and N. Argaç, Power values of generalized skew derivations with annihilator conditions on Lie ideals, Bull. Iranian Math. Soc., 46 (2020), 1583-1598.
  • I. N. Herstein, Topics in Ring Theory, University of Chicago Press, Chicago, 1969.
  • N. Jacobson, Structure of Rings, Amer. Math. Soc., Providence, RI, 1964.
  • C. Lanski and S. Montgomery, Lie structure of prime rings of characteristic 2, Pacific J. Math., 42 (1) (1972), 117-136.
  • W. S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra, 12 (1969), 576-584.
  • R. K. Sharma, B. Dhara, V. De Filippis and C. Garg, A result concerning nilpotent values with generalized skew derivations on Lie ideals, Comm. Algebra, 46 (2018), 5330-5341.
  • N. Yarbil and N. Argaç, Annihilators of power values of generalized skew derivations on Lie ideals, Algebra and its applications, 307-316, De Gruyter Proc. Math., De Gruyter, Berlin, 2018.
There are 20 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Vincenzo De Fılıppıs This is me

Nadeem Ur Rehman This is me

Giovanni Scudo This is me

Publication Date July 16, 2022
Published in Issue Year 2022

Cite

APA De Fılıppıs, V., Rehman, N. U., & Scudo, G. (2022). Annihilator conditions with generalized skew derivations and Lie ideals of prime rings. International Electronic Journal of Algebra, 32(32), 192-216. https://doi.org/10.24330/ieja.1143810
AMA De Fılıppıs V, Rehman NU, Scudo G. Annihilator conditions with generalized skew derivations and Lie ideals of prime rings. IEJA. July 2022;32(32):192-216. doi:10.24330/ieja.1143810
Chicago De Fılıppıs, Vincenzo, Nadeem Ur Rehman, and Giovanni Scudo. “Annihilator Conditions With Generalized Skew Derivations and Lie Ideals of Prime Rings”. International Electronic Journal of Algebra 32, no. 32 (July 2022): 192-216. https://doi.org/10.24330/ieja.1143810.
EndNote De Fılıppıs V, Rehman NU, Scudo G (July 1, 2022) Annihilator conditions with generalized skew derivations and Lie ideals of prime rings. International Electronic Journal of Algebra 32 32 192–216.
IEEE V. De Fılıppıs, N. U. Rehman, and G. Scudo, “Annihilator conditions with generalized skew derivations and Lie ideals of prime rings”, IEJA, vol. 32, no. 32, pp. 192–216, 2022, doi: 10.24330/ieja.1143810.
ISNAD De Fılıppıs, Vincenzo et al. “Annihilator Conditions With Generalized Skew Derivations and Lie Ideals of Prime Rings”. International Electronic Journal of Algebra 32/32 (July 2022), 192-216. https://doi.org/10.24330/ieja.1143810.
JAMA De Fılıppıs V, Rehman NU, Scudo G. Annihilator conditions with generalized skew derivations and Lie ideals of prime rings. IEJA. 2022;32:192–216.
MLA De Fılıppıs, Vincenzo et al. “Annihilator Conditions With Generalized Skew Derivations and Lie Ideals of Prime Rings”. International Electronic Journal of Algebra, vol. 32, no. 32, 2022, pp. 192-16, doi:10.24330/ieja.1143810.
Vancouver De Fılıppıs V, Rehman NU, Scudo G. Annihilator conditions with generalized skew derivations and Lie ideals of prime rings. IEJA. 2022;32(32):192-216.