Research Article
BibTex RIS Cite

On the irreducible representations of the Jordan triple system of $p \times q$ matrices

Year 2023, , 213 - 225, 09.01.2023
https://doi.org/10.24330/ieja.1226320

Abstract

Let $\mathcal{J}_{\field}$ be the Jordan triple system of all $p \times q$ ($p\neq q$; $p,q >1)$ rectangular matrices over a field $\field$ of characteristic 0 with the triple product $\{x,y,z\}= x y^t z+ z y^t x $, where $y^t$ is the transpose of $y$. We study the universal associative envelope $\mathcal{U}(\mathcal{J}_{\field})$ of $\mathcal{J}_{\field}$ and show that $\mathcal{U}(\mathcal{J}_{\field}) \cong M_{p+q \times p+q}(\field)$, where $M_{p+q\times p+q} (\field)$ is the ordinary associative algebra of all $(p+q) \times (p+q)$ matrices over $\field$. It follows that there exists only one nontrivial irreducible representation of $\mathcal{J}_{\field}$. The center of $\mathcal{U}(\mathcal{J}_{\field})$ is deduced.

References

  • C. Chu, Jordan triples and Riemannian symmetric spaces, Adv. Math., 219 (2008), 2029-2057.
  • E. Corrigan and T. Hollowood, String construction of a commutative nonassociative algebra related to the exceptional Jordan algebra, Phys. Lett., 203 (1988), 47-51.
  • H. Elgendy, On the universal envelope of a Jordan triple system of $n \times n$ matrices, J. Algebra Appl., 21(6) (2022), 2250126 (19 pp).
  • H. Elgendy, Representations of special Jordan triple systems of all symmetric and hermitian $n$ by $n$ matrices, Linear Multilinear Algebra, DOI: 10.1080/03081087.2021.1970097, in press.
  • D. Fairlie and C. Manogue, Lorentz invariance and the composite string, Phys. Rev., 34 (1986), 1832-1834.
  • J. Faulkner and J. Ferrar, Exceptional Lie algebras and related algebraic and geometric structures, Bull. London Math. Soc., 9 (1977), 1-35.
  • R. Foot and G. Joshi, String theories and the Jordan algebras, Phys. Lett., 199 (1987), 203-208.
  • P. Goddard, W. Nahm, D. Olive, H. Ruegg and A. Schwimmer, Fermions and octonions, Comm. Math. Phys., 112 (1987), 385-408.
  • M. Günaydin and F. Gürsey, Quark structure and octonions, J. Mathematical Phys., 14 (1973), 1651-1667.
  • M. Günaydin, G. Sierra and P. Townsend, The geometry of $N=2$ Maxwell-Einstein supergravity and Jordan algebras, Nuclear Phys., 242 (1984), 244-268.
  • F. Gürsey, Super Poincar$\acute{e}$ groups and division algebras, Modern Phys. Lett., 2 (1987), 967-976.
  • N. Jacobson, Lie and Jordan triple systems, Amer. J. Math., 71 (1949), 149-170.
  • W. Kaup and D. Zaitsev, On symmetric Cauchy-Riemann manifolds, Adv. Math., 149 (2000), 145-181.
  • M. Koecher, Imbedding of Jordan algebras into Lie algebras I, Amer. J. Math., 89 (1967), 787-816.
  • M. Koecher, An Elementary Approach to Bounded Symmetric Domains, Lecture Notes, Rice University, Houston, 1969.
  • K. McCrimmon, Jordan algebras and their applications, Bull. Amer. Math. Soc., 84 (1978), 612-627.
  • K. McCrimmon, A Taste of Jordan Algebras, Universitext, Springer-Verlag, 2004.
  • K. Meyberg, Lectures on Algebras and Triple Systems, Lecture Notes, University of Virginia, Charlottesville, 1972.
  • E. Neher, Jordan Triple Systems by the Grid Approach, Lecture Notes in Mathematics, Vol. 1280, Springer-Verlag, Berlin, 1987.
  • S. Okubo, Triple products and Yang-Baxter equation. II. Orthogonal and symplectic ternary systems, J. Math. Phys., 34 (1993), 3292-3315.
  • G. Sierra, An application of the theories of Jordan algebras and Freudenthal triple systems to particles and strings, Classical Quantum Gravity, 4 (1987), 227-236.
  • H. Upmeier, Jordan algebras and harmonic analysis on symmetric spaces, Amer. J. Math., 108 (1986), 1-25.
Year 2023, , 213 - 225, 09.01.2023
https://doi.org/10.24330/ieja.1226320

Abstract

References

  • C. Chu, Jordan triples and Riemannian symmetric spaces, Adv. Math., 219 (2008), 2029-2057.
  • E. Corrigan and T. Hollowood, String construction of a commutative nonassociative algebra related to the exceptional Jordan algebra, Phys. Lett., 203 (1988), 47-51.
  • H. Elgendy, On the universal envelope of a Jordan triple system of $n \times n$ matrices, J. Algebra Appl., 21(6) (2022), 2250126 (19 pp).
  • H. Elgendy, Representations of special Jordan triple systems of all symmetric and hermitian $n$ by $n$ matrices, Linear Multilinear Algebra, DOI: 10.1080/03081087.2021.1970097, in press.
  • D. Fairlie and C. Manogue, Lorentz invariance and the composite string, Phys. Rev., 34 (1986), 1832-1834.
  • J. Faulkner and J. Ferrar, Exceptional Lie algebras and related algebraic and geometric structures, Bull. London Math. Soc., 9 (1977), 1-35.
  • R. Foot and G. Joshi, String theories and the Jordan algebras, Phys. Lett., 199 (1987), 203-208.
  • P. Goddard, W. Nahm, D. Olive, H. Ruegg and A. Schwimmer, Fermions and octonions, Comm. Math. Phys., 112 (1987), 385-408.
  • M. Günaydin and F. Gürsey, Quark structure and octonions, J. Mathematical Phys., 14 (1973), 1651-1667.
  • M. Günaydin, G. Sierra and P. Townsend, The geometry of $N=2$ Maxwell-Einstein supergravity and Jordan algebras, Nuclear Phys., 242 (1984), 244-268.
  • F. Gürsey, Super Poincar$\acute{e}$ groups and division algebras, Modern Phys. Lett., 2 (1987), 967-976.
  • N. Jacobson, Lie and Jordan triple systems, Amer. J. Math., 71 (1949), 149-170.
  • W. Kaup and D. Zaitsev, On symmetric Cauchy-Riemann manifolds, Adv. Math., 149 (2000), 145-181.
  • M. Koecher, Imbedding of Jordan algebras into Lie algebras I, Amer. J. Math., 89 (1967), 787-816.
  • M. Koecher, An Elementary Approach to Bounded Symmetric Domains, Lecture Notes, Rice University, Houston, 1969.
  • K. McCrimmon, Jordan algebras and their applications, Bull. Amer. Math. Soc., 84 (1978), 612-627.
  • K. McCrimmon, A Taste of Jordan Algebras, Universitext, Springer-Verlag, 2004.
  • K. Meyberg, Lectures on Algebras and Triple Systems, Lecture Notes, University of Virginia, Charlottesville, 1972.
  • E. Neher, Jordan Triple Systems by the Grid Approach, Lecture Notes in Mathematics, Vol. 1280, Springer-Verlag, Berlin, 1987.
  • S. Okubo, Triple products and Yang-Baxter equation. II. Orthogonal and symplectic ternary systems, J. Math. Phys., 34 (1993), 3292-3315.
  • G. Sierra, An application of the theories of Jordan algebras and Freudenthal triple systems to particles and strings, Classical Quantum Gravity, 4 (1987), 227-236.
  • H. Upmeier, Jordan algebras and harmonic analysis on symmetric spaces, Amer. J. Math., 108 (1986), 1-25.
There are 22 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Hader A. Elgendy This is me

Publication Date January 9, 2023
Published in Issue Year 2023

Cite

APA Elgendy, H. A. (2023). On the irreducible representations of the Jordan triple system of $p \times q$ matrices. International Electronic Journal of Algebra, 33(33), 213-225. https://doi.org/10.24330/ieja.1226320
AMA Elgendy HA. On the irreducible representations of the Jordan triple system of $p \times q$ matrices. IEJA. January 2023;33(33):213-225. doi:10.24330/ieja.1226320
Chicago Elgendy, Hader A. “On the Irreducible Representations of the Jordan Triple System of $p \times Q$ Matrices”. International Electronic Journal of Algebra 33, no. 33 (January 2023): 213-25. https://doi.org/10.24330/ieja.1226320.
EndNote Elgendy HA (January 1, 2023) On the irreducible representations of the Jordan triple system of $p \times q$ matrices. International Electronic Journal of Algebra 33 33 213–225.
IEEE H. A. Elgendy, “On the irreducible representations of the Jordan triple system of $p \times q$ matrices”, IEJA, vol. 33, no. 33, pp. 213–225, 2023, doi: 10.24330/ieja.1226320.
ISNAD Elgendy, Hader A. “On the Irreducible Representations of the Jordan Triple System of $p \times Q$ Matrices”. International Electronic Journal of Algebra 33/33 (January 2023), 213-225. https://doi.org/10.24330/ieja.1226320.
JAMA Elgendy HA. On the irreducible representations of the Jordan triple system of $p \times q$ matrices. IEJA. 2023;33:213–225.
MLA Elgendy, Hader A. “On the Irreducible Representations of the Jordan Triple System of $p \times Q$ Matrices”. International Electronic Journal of Algebra, vol. 33, no. 33, 2023, pp. 213-25, doi:10.24330/ieja.1226320.
Vancouver Elgendy HA. On the irreducible representations of the Jordan triple system of $p \times q$ matrices. IEJA. 2023;33(33):213-25.