Research Article
BibTex RIS Cite

Nil$_{\ast}$-Artinian rings

Year 2023, , 152 - 158, 10.07.2023
https://doi.org/10.24330/ieja.1260486

Abstract

In this paper, we say a ring $R$ is Nil$_{\ast}$-Artinian if any
descending chain of nil ideals stabilizes. We first study
Nil$_{\ast}$-Artinian properties in terms of quotients,
localizations, polynomial extensions and idealizations, and then
study the transfer of Nil$_{\ast}$-Artinian rings to amalgamated
algebras. Besides, some examples are given to distinguish
Nil$_{\ast}$-Artinian rings, Nil$_{\ast}$-Noetherian rings and
Nil$_{\ast}$-coherent rings.

References

  • K. Adarbeh and S. Kabbaj, Trivial extensions subject to semi-regularity and semi-coherence, Quaest. Math., 43(1) (2020), 45-54.
  • D. D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra, 1(1) (2009), 3-56.
  • M. D'Anna, C. Finocchiaro and M. Fontana, Amalgamated algebras along an ideal, Commutative Algebra and its Applications, Walter de Gruyter, Berlin, (2009), 155-172.
  • M. D'Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl., 6(3) (2007), 443-459.
  • G. Donadze and V. Z. Thomas, Bazzoni-Glaz conjecture, J. Algebra, 420 (2014), 141-160.
  • S. Glaz, Commutative Coherent Rings, Lecture Notes in Mathematics, 1371, Berlin, Spring-Verlag, 1989.
  • J. A. Huckaba, Commutative Rings with Zero Divisors, Monographs and Textbooks in Pure and Applied Mathematics, 117, Marcel Dekker, Inc., New York, 1988.
  • K. A. Ismaili, D. E. Dobbs and N. Mahdou, Commutative rings and modules that are Nil$_{\ast}$-coherent or special Nil$_{\ast}$-coherent, J. Algebra Appl., 16(10) (2017), 1750187 (24 pp).
  • F. G. Wang and H. Kim, Foundations of Commutative Rings and Their Modules, Algebra and Applications, 22, Singapore, Springer, 2016.
  • Y. Xiang and L. Ouyang, Nil$_{\ast}$-coherent rings, Bull. Korean Math. Soc., 51(2) (2014), 579-594.
  • X. L. Zhang, Nil$_{\ast}$-Noetherian rings, https://arxiv.org/abs/2205.11724.
Year 2023, , 152 - 158, 10.07.2023
https://doi.org/10.24330/ieja.1260486

Abstract

References

  • K. Adarbeh and S. Kabbaj, Trivial extensions subject to semi-regularity and semi-coherence, Quaest. Math., 43(1) (2020), 45-54.
  • D. D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra, 1(1) (2009), 3-56.
  • M. D'Anna, C. Finocchiaro and M. Fontana, Amalgamated algebras along an ideal, Commutative Algebra and its Applications, Walter de Gruyter, Berlin, (2009), 155-172.
  • M. D'Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl., 6(3) (2007), 443-459.
  • G. Donadze and V. Z. Thomas, Bazzoni-Glaz conjecture, J. Algebra, 420 (2014), 141-160.
  • S. Glaz, Commutative Coherent Rings, Lecture Notes in Mathematics, 1371, Berlin, Spring-Verlag, 1989.
  • J. A. Huckaba, Commutative Rings with Zero Divisors, Monographs and Textbooks in Pure and Applied Mathematics, 117, Marcel Dekker, Inc., New York, 1988.
  • K. A. Ismaili, D. E. Dobbs and N. Mahdou, Commutative rings and modules that are Nil$_{\ast}$-coherent or special Nil$_{\ast}$-coherent, J. Algebra Appl., 16(10) (2017), 1750187 (24 pp).
  • F. G. Wang and H. Kim, Foundations of Commutative Rings and Their Modules, Algebra and Applications, 22, Singapore, Springer, 2016.
  • Y. Xiang and L. Ouyang, Nil$_{\ast}$-coherent rings, Bull. Korean Math. Soc., 51(2) (2014), 579-594.
  • X. L. Zhang, Nil$_{\ast}$-Noetherian rings, https://arxiv.org/abs/2205.11724.
There are 11 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Xiaolei Zhang This is me

Wei Qı This is me

Early Pub Date May 11, 2023
Publication Date July 10, 2023
Published in Issue Year 2023

Cite

APA Zhang, X., & Qı, W. (2023). Nil$_{\ast}$-Artinian rings. International Electronic Journal of Algebra, 34(34), 152-158. https://doi.org/10.24330/ieja.1260486
AMA Zhang X, Qı W. Nil$_{\ast}$-Artinian rings. IEJA. July 2023;34(34):152-158. doi:10.24330/ieja.1260486
Chicago Zhang, Xiaolei, and Wei Qı. “Nil$_{\ast}$-Artinian Rings”. International Electronic Journal of Algebra 34, no. 34 (July 2023): 152-58. https://doi.org/10.24330/ieja.1260486.
EndNote Zhang X, Qı W (July 1, 2023) Nil$_{\ast}$-Artinian rings. International Electronic Journal of Algebra 34 34 152–158.
IEEE X. Zhang and W. Qı, “Nil$_{\ast}$-Artinian rings”, IEJA, vol. 34, no. 34, pp. 152–158, 2023, doi: 10.24330/ieja.1260486.
ISNAD Zhang, Xiaolei - Qı, Wei. “Nil$_{\ast}$-Artinian Rings”. International Electronic Journal of Algebra 34/34 (July 2023), 152-158. https://doi.org/10.24330/ieja.1260486.
JAMA Zhang X, Qı W. Nil$_{\ast}$-Artinian rings. IEJA. 2023;34:152–158.
MLA Zhang, Xiaolei and Wei Qı. “Nil$_{\ast}$-Artinian Rings”. International Electronic Journal of Algebra, vol. 34, no. 34, 2023, pp. 152-8, doi:10.24330/ieja.1260486.
Vancouver Zhang X, Qı W. Nil$_{\ast}$-Artinian rings. IEJA. 2023;34(34):152-8.