Research Article
BibTex RIS Cite

$(n,d)$-$\mathcal{X}_R$-phantom and $(n,d)$-$_R\mathcal{X}$-cophantom morphisms

Year 2023, , 210 - 236, 10.07.2023
https://doi.org/10.24330/ieja.1260503

Abstract

Several authors have been interested in some like phantom
morphisms such as $d$-phantoms,
$d$-$\operatorname{Ext}$-phantoms, neat-phantom morphisms, clean-
cophantom morphisms, $RD$-phantom morphisms and
$RD$-$\operatorname{Ext}$-phantom morphisms. In this paper, we
prove that these notions can be unified. We are mainly interested
in proving that the majority of the existing results hold true in
our general framework.

References

  • M. Auslander and O. Solberg, Relative homology and representation theory I, relative homology and homologically finite categories, Comm. Algebra, 21(9) (1993), 2995-3031.
  • D. Bennis, $n$-$\mathcal{X}$-coherent rings, Int. Electron. J. Algebra, 7 (2010), 128-139.
  • J. Chen and N. Ding, On $n$-coherent rings, Comm. Algebra, 24(10) (1996), 3211-216.
  • S. Crivei, M. Prest and B. Torrecillas, Covers in finitely accessible categories, Proc. Amer. Math. Soc., 138(4) (2010), 1213-1221.
  • X. H. Fu, P. A. Guil Asensio, I. Herzog and B. Torrecillas, Ideal approximation theory, Adv. Math., 244 (2013), 750-790.
  • I. Herzog, The phantom cover of a module, Adv. Math., 215 (2007), 220-249.
  • I. Herzog, Contravariant functors on the category of finitely presented modules, Israel J. Math., 167 (2008), 347-410.
  • K. Lan and B. Lu, On $n$-phantom and $n$-Ext-phantom morphisms, Taiwanese J. Math., 25 (2021), 941-957.
  • L. X. Mao, On covers and envelopes in some functor categories, Comm. Algebra, 41(5) (2013), 1655-1684.
  • L. X. Mao, Precovers and preenvelopes by phantom and Ext-phantom morphisms, Comm. Algebra, 44(4) (2016), 1704-1721.
  • L. X. Mao, RD-phantom and RD-Ext-phantom morphisms, Filomat, 32(8) (2018), 2883-2895.
  • L. X. Mao, Higher phantom and Ext-phantom morphisms, J. Algebra Appl., 17(1) (2018), 1850012 (15 pp).
  • L. X. Mao, Higher phantom morphisms with respect to a subfunctor of Ext, Algebr. Represent. Theory, 22(2) (2019), 407-424.
  • L. X. Mao, Neat-phantom and clean-cophantom morphisms, J. Algebra Appl., 20(9) (2021), 2150172 (24 pp).
  • L. X. Mao and N. Q. Ding, Envelopes and covers by modules of finite FP-injective and flat dimensions, Comm. Algebra, 35(3) (2007), 833-849.
  • C. A. McGibbon, Phantom maps, in Handboook of Algebraic Topology, North-Holland, Amsterdam, (1995), 1209-1257.
  • J. J. Rotman, An Introduction to Homological Algebra, Pure and Applied Mathematics, 85, Academic Press, Inc., New York-London, 1979.
Year 2023, , 210 - 236, 10.07.2023
https://doi.org/10.24330/ieja.1260503

Abstract

References

  • M. Auslander and O. Solberg, Relative homology and representation theory I, relative homology and homologically finite categories, Comm. Algebra, 21(9) (1993), 2995-3031.
  • D. Bennis, $n$-$\mathcal{X}$-coherent rings, Int. Electron. J. Algebra, 7 (2010), 128-139.
  • J. Chen and N. Ding, On $n$-coherent rings, Comm. Algebra, 24(10) (1996), 3211-216.
  • S. Crivei, M. Prest and B. Torrecillas, Covers in finitely accessible categories, Proc. Amer. Math. Soc., 138(4) (2010), 1213-1221.
  • X. H. Fu, P. A. Guil Asensio, I. Herzog and B. Torrecillas, Ideal approximation theory, Adv. Math., 244 (2013), 750-790.
  • I. Herzog, The phantom cover of a module, Adv. Math., 215 (2007), 220-249.
  • I. Herzog, Contravariant functors on the category of finitely presented modules, Israel J. Math., 167 (2008), 347-410.
  • K. Lan and B. Lu, On $n$-phantom and $n$-Ext-phantom morphisms, Taiwanese J. Math., 25 (2021), 941-957.
  • L. X. Mao, On covers and envelopes in some functor categories, Comm. Algebra, 41(5) (2013), 1655-1684.
  • L. X. Mao, Precovers and preenvelopes by phantom and Ext-phantom morphisms, Comm. Algebra, 44(4) (2016), 1704-1721.
  • L. X. Mao, RD-phantom and RD-Ext-phantom morphisms, Filomat, 32(8) (2018), 2883-2895.
  • L. X. Mao, Higher phantom and Ext-phantom morphisms, J. Algebra Appl., 17(1) (2018), 1850012 (15 pp).
  • L. X. Mao, Higher phantom morphisms with respect to a subfunctor of Ext, Algebr. Represent. Theory, 22(2) (2019), 407-424.
  • L. X. Mao, Neat-phantom and clean-cophantom morphisms, J. Algebra Appl., 20(9) (2021), 2150172 (24 pp).
  • L. X. Mao and N. Q. Ding, Envelopes and covers by modules of finite FP-injective and flat dimensions, Comm. Algebra, 35(3) (2007), 833-849.
  • C. A. McGibbon, Phantom maps, in Handboook of Algebraic Topology, North-Holland, Amsterdam, (1995), 1209-1257.
  • J. J. Rotman, An Introduction to Homological Algebra, Pure and Applied Mathematics, 85, Academic Press, Inc., New York-London, 1979.
There are 17 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Mourad Khattarı This is me

Driss Bennıs This is me

Early Pub Date May 11, 2023
Publication Date July 10, 2023
Published in Issue Year 2023

Cite

APA Khattarı, M., & Bennıs, D. (2023). $(n,d)$-$\mathcal{X}_R$-phantom and $(n,d)$-$_R\mathcal{X}$-cophantom morphisms. International Electronic Journal of Algebra, 34(34), 210-236. https://doi.org/10.24330/ieja.1260503
AMA Khattarı M, Bennıs D. $(n,d)$-$\mathcal{X}_R$-phantom and $(n,d)$-$_R\mathcal{X}$-cophantom morphisms. IEJA. July 2023;34(34):210-236. doi:10.24330/ieja.1260503
Chicago Khattarı, Mourad, and Driss Bennıs. “$(n,d)$-$\mathcal{X}_R$-Phantom and $(n,d)$-$_R\mathcal{X}$-Cophantom Morphisms”. International Electronic Journal of Algebra 34, no. 34 (July 2023): 210-36. https://doi.org/10.24330/ieja.1260503.
EndNote Khattarı M, Bennıs D (July 1, 2023) $(n,d)$-$\mathcal{X}_R$-phantom and $(n,d)$-$_R\mathcal{X}$-cophantom morphisms. International Electronic Journal of Algebra 34 34 210–236.
IEEE M. Khattarı and D. Bennıs, “$(n,d)$-$\mathcal{X}_R$-phantom and $(n,d)$-$_R\mathcal{X}$-cophantom morphisms”, IEJA, vol. 34, no. 34, pp. 210–236, 2023, doi: 10.24330/ieja.1260503.
ISNAD Khattarı, Mourad - Bennıs, Driss. “$(n,d)$-$\mathcal{X}_R$-Phantom and $(n,d)$-$_R\mathcal{X}$-Cophantom Morphisms”. International Electronic Journal of Algebra 34/34 (July 2023), 210-236. https://doi.org/10.24330/ieja.1260503.
JAMA Khattarı M, Bennıs D. $(n,d)$-$\mathcal{X}_R$-phantom and $(n,d)$-$_R\mathcal{X}$-cophantom morphisms. IEJA. 2023;34:210–236.
MLA Khattarı, Mourad and Driss Bennıs. “$(n,d)$-$\mathcal{X}_R$-Phantom and $(n,d)$-$_R\mathcal{X}$-Cophantom Morphisms”. International Electronic Journal of Algebra, vol. 34, no. 34, 2023, pp. 210-36, doi:10.24330/ieja.1260503.
Vancouver Khattarı M, Bennıs D. $(n,d)$-$\mathcal{X}_R$-phantom and $(n,d)$-$_R\mathcal{X}$-cophantom morphisms. IEJA. 2023;34(34):210-36.