Research Article
BibTex RIS Cite
Year 2023, , 71 - 87, 10.07.2023
https://doi.org/10.24330/ieja.1281654

Abstract

References

  • G. Almkvist, Endomorphisms of finitely generated projective modules over a commutative ring, Ark. Mat., 11 (1973), 263-301.
  • A. J. Diesl, Nil clean rings, J. Algebra, 383 (2013), 197-211.
  • K. Matthews, Solving the Diophantine equation $ax^{2}+bxy+cy^{2}+dx+ey+f=0$, preprint, 2015-2020.
  • K. Matthews, http://www.numbertheory.org/php/generalquadratic.html.
  • J. Ster, Rings in which nilpotents form a subring, Carpathian J. Math., 31(2) (2015), 157-163.

Unipotent diagonalization of matrices

Year 2023, , 71 - 87, 10.07.2023
https://doi.org/10.24330/ieja.1281654

Abstract

An element $u$ of a ring $R$ is called \textsl{unipotent} if $u-1$ is
nilpotent. Two elements $a,b\in R$ are called \textsl{unipotent equivalent}
if there exist unipotents $p,q\in R$ such that $b=q^{-1}ap$. Two square
matrices $A,B$ are called \textsl{strongly unipotent equivalent} if there
are unipotent triangular matrices $P,Q$ with $B=Q^{-1}AP$.
In this paper, over commutative reduced rings, we characterize the matrices
which are strongly unipotent equivalent to diagonal matrices. For $2\times 2$
matrices over B\'{e}zout domains, we characterize the nilpotent matrices
unipotent equivalent to some multiples of $E_{12}$ and the nontrivial
idempotents unipotent equivalent to $E_{11}$.

References

  • G. Almkvist, Endomorphisms of finitely generated projective modules over a commutative ring, Ark. Mat., 11 (1973), 263-301.
  • A. J. Diesl, Nil clean rings, J. Algebra, 383 (2013), 197-211.
  • K. Matthews, Solving the Diophantine equation $ax^{2}+bxy+cy^{2}+dx+ey+f=0$, preprint, 2015-2020.
  • K. Matthews, http://www.numbertheory.org/php/generalquadratic.html.
  • J. Ster, Rings in which nilpotents form a subring, Carpathian J. Math., 31(2) (2015), 157-163.
There are 5 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Grigore Calugareanu This is me

Early Pub Date May 11, 2023
Publication Date July 10, 2023
Published in Issue Year 2023

Cite

APA Calugareanu, G. (2023). Unipotent diagonalization of matrices. International Electronic Journal of Algebra, 34(34), 71-87. https://doi.org/10.24330/ieja.1281654
AMA Calugareanu G. Unipotent diagonalization of matrices. IEJA. July 2023;34(34):71-87. doi:10.24330/ieja.1281654
Chicago Calugareanu, Grigore. “Unipotent Diagonalization of Matrices”. International Electronic Journal of Algebra 34, no. 34 (July 2023): 71-87. https://doi.org/10.24330/ieja.1281654.
EndNote Calugareanu G (July 1, 2023) Unipotent diagonalization of matrices. International Electronic Journal of Algebra 34 34 71–87.
IEEE G. Calugareanu, “Unipotent diagonalization of matrices”, IEJA, vol. 34, no. 34, pp. 71–87, 2023, doi: 10.24330/ieja.1281654.
ISNAD Calugareanu, Grigore. “Unipotent Diagonalization of Matrices”. International Electronic Journal of Algebra 34/34 (July 2023), 71-87. https://doi.org/10.24330/ieja.1281654.
JAMA Calugareanu G. Unipotent diagonalization of matrices. IEJA. 2023;34:71–87.
MLA Calugareanu, Grigore. “Unipotent Diagonalization of Matrices”. International Electronic Journal of Algebra, vol. 34, no. 34, 2023, pp. 71-87, doi:10.24330/ieja.1281654.
Vancouver Calugareanu G. Unipotent diagonalization of matrices. IEJA. 2023;34(34):71-87.