Research Article
BibTex RIS Cite

On NH-embedded and SS-quasinormal subgroups of finite groups

Year 2024, , 121 - 129, 09.01.2024
https://doi.org/10.24330/ieja.1299719

Abstract

Let $G$ be a finite group. A subgroup $H$ is called $S$-semipermutable in $G$ if $HG_p$ = $G_pH$ for any $G_p\in Syl_p(G)$ with $(|H|, p) = 1$, where $p$ is a prime number divisible $|G|$. Furthermore, $H$ is said to be $NH$-embedded in $G$
if there exists a normal subgroup $T$ of $G$ such that $HT$ is a Hall subgroup of $G$ and
$H \cap T \leq H_{\overline{s}G}$, where $H_{\overline{s}G}$ is the largest $S$-semipermutable subgroup of $G$ contained in
$H$, and $H$ is said to be $SS$-quasinormal in $G$ provided there is a supplement $B$ of $H$ to $G$ such that $H$ permutes with every Sylow subgroup of $B$. In this paper, we obtain some criteria for $p$-nilpotency and Supersolvability of a finite
group and extend some known results concerning $NH$-embedded and $SS$-quasinormal subgroups.

References

  • M. Asaad and A. Heliel, On S-quasinormally embedded subgroups of finite groups, J. Pure Appl. Algebra, 165(2) (2001), 129-135.
  • Z. Chen, On a theorem of Srinivasan, J. Southwest Normal Univ. Nat. Sci. (Chinese), 12(1) (1987), 1-4.
  • W. E. Deskins, On quasinormal subgroups of finite groups, Math. Z., 82 (1963), 125-132.
  • K. Doerk and T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin, 1992.
  • Y. Gao and X. Li, On NH-embedded subgroups of finite groups, J. Algebra Appl., 21(10) (2022), 2250200 (11 pp).
  • B. Huppert, Endliche Gruppen, Springer-Verlag, Berlin, 1967.
  • I. M. Isaacs, Semipermutable $\pi$-subgroups, Arch. Math. (Basel), 102(1) (2014), 1-6.
  • O. H. Kegel, Sylow-Gruppen und Subnormalteiler endlicher Gruppen, Math. Z., 78 (1962), 205-221.
  • S. Li, Z. Shen, J. Liu and X. Liu, The influence of SS-quasinormality of some subgroups on the structure of finite groups, J. Algebra, 319(10) (2008), 4275-4287.
  • Y. Li, S. Qiao, N. Su and Y. Wang, On weakly s-semipermutable subgroups of finite groups, J. Algebra, 371 (2012), 250-261.
  • P. Schmid, Subgroups permutable with all Sylow subgroups, J. Algebra, 207(1) (1998), 285-293.
  • Q. Zhang and L. Wang, The influence of s-semipermutable subgroups on the structure of finite groups, Acta Math. Sinica (Chinese Ser.), 48 (2005), 81-88.
Year 2024, , 121 - 129, 09.01.2024
https://doi.org/10.24330/ieja.1299719

Abstract

References

  • M. Asaad and A. Heliel, On S-quasinormally embedded subgroups of finite groups, J. Pure Appl. Algebra, 165(2) (2001), 129-135.
  • Z. Chen, On a theorem of Srinivasan, J. Southwest Normal Univ. Nat. Sci. (Chinese), 12(1) (1987), 1-4.
  • W. E. Deskins, On quasinormal subgroups of finite groups, Math. Z., 82 (1963), 125-132.
  • K. Doerk and T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin, 1992.
  • Y. Gao and X. Li, On NH-embedded subgroups of finite groups, J. Algebra Appl., 21(10) (2022), 2250200 (11 pp).
  • B. Huppert, Endliche Gruppen, Springer-Verlag, Berlin, 1967.
  • I. M. Isaacs, Semipermutable $\pi$-subgroups, Arch. Math. (Basel), 102(1) (2014), 1-6.
  • O. H. Kegel, Sylow-Gruppen und Subnormalteiler endlicher Gruppen, Math. Z., 78 (1962), 205-221.
  • S. Li, Z. Shen, J. Liu and X. Liu, The influence of SS-quasinormality of some subgroups on the structure of finite groups, J. Algebra, 319(10) (2008), 4275-4287.
  • Y. Li, S. Qiao, N. Su and Y. Wang, On weakly s-semipermutable subgroups of finite groups, J. Algebra, 371 (2012), 250-261.
  • P. Schmid, Subgroups permutable with all Sylow subgroups, J. Algebra, 207(1) (1998), 285-293.
  • Q. Zhang and L. Wang, The influence of s-semipermutable subgroups on the structure of finite groups, Acta Math. Sinica (Chinese Ser.), 48 (2005), 81-88.
There are 12 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Weicheng Zheng This is me

Liang Cuı This is me

Wei Meng This is me

Jiakuan Lu This is me

Early Pub Date May 24, 2023
Publication Date January 9, 2024
Published in Issue Year 2024

Cite

APA Zheng, W., Cuı, L., Meng, W., Lu, J. (2024). On NH-embedded and SS-quasinormal subgroups of finite groups. International Electronic Journal of Algebra, 35(35), 121-129. https://doi.org/10.24330/ieja.1299719
AMA Zheng W, Cuı L, Meng W, Lu J. On NH-embedded and SS-quasinormal subgroups of finite groups. IEJA. January 2024;35(35):121-129. doi:10.24330/ieja.1299719
Chicago Zheng, Weicheng, Liang Cuı, Wei Meng, and Jiakuan Lu. “On NH-Embedded and SS-Quasinormal Subgroups of Finite Groups”. International Electronic Journal of Algebra 35, no. 35 (January 2024): 121-29. https://doi.org/10.24330/ieja.1299719.
EndNote Zheng W, Cuı L, Meng W, Lu J (January 1, 2024) On NH-embedded and SS-quasinormal subgroups of finite groups. International Electronic Journal of Algebra 35 35 121–129.
IEEE W. Zheng, L. Cuı, W. Meng, and J. Lu, “On NH-embedded and SS-quasinormal subgroups of finite groups”, IEJA, vol. 35, no. 35, pp. 121–129, 2024, doi: 10.24330/ieja.1299719.
ISNAD Zheng, Weicheng et al. “On NH-Embedded and SS-Quasinormal Subgroups of Finite Groups”. International Electronic Journal of Algebra 35/35 (January 2024), 121-129. https://doi.org/10.24330/ieja.1299719.
JAMA Zheng W, Cuı L, Meng W, Lu J. On NH-embedded and SS-quasinormal subgroups of finite groups. IEJA. 2024;35:121–129.
MLA Zheng, Weicheng et al. “On NH-Embedded and SS-Quasinormal Subgroups of Finite Groups”. International Electronic Journal of Algebra, vol. 35, no. 35, 2024, pp. 121-9, doi:10.24330/ieja.1299719.
Vancouver Zheng W, Cuı L, Meng W, Lu J. On NH-embedded and SS-quasinormal subgroups of finite groups. IEJA. 2024;35(35):121-9.