Research Article
BibTex RIS Cite

An extension of $S$--noetherian rings and modules

Year 2023, , 1 - 20, 10.07.2023
https://doi.org/10.24330/ieja.1300716

Abstract

For any commutative ring $A$ we introduce a generalization of $S$--noetherian rings using a here\-ditary torsion theory $\sigma$ instead of a multiplicatively closed subset $S\subseteq{A}$. It is proved that totally noetherian w.r.t. $\sigma$ is a local property, and if $A$ is a totally noetherian ring w.r.t $\sigma$, then $\sigma$ is of finite type.

References

  • H. Ahmed, $S$-Noetherian spectrum condition, Comm. Algebra, 46(8) (2018), 3314-3321.
  • D. D. Anderson and T. Dumitrescu, $S$-Noetherian rings, Comm. Algebra, 30(9) (2002), 4407-4416.
  • T.~Dumitrescu, Generic fiber of power series ring extensions, Comm. Algebra, 37(3) (2009), 1098-1103.
  • M. Eljeri, $S$-strongly finite type rings, Asian Research J. Math., 9(4) (2018), 1-9.
  • J. S. Golan, Torsion Theories, Pitman Monographs and Surveys in Pure and Applied Math., 29, Pitman, 1986.
  • E. Hamann, E. Houston and J. L. Johnson, Properties of uppers to zero in $R[X]$, Pacific J. Math., 135(1) (1988), 65-79.
  • P. Jara, An extension of $S$-artinian rings and modules to a hereditary torsion theory setting, Comm. Algebra, 49(4) (2021), 1583-1599.
  • A. V. Jategaonkar, Endomorphism rings of torsionless modules, Trans. Amer. Math. Soc., 161 (1971), 457-466.
  • C. Jayaram, K. H. Oral and U. Tekir, Strongly 0-dimensional rings, Comm. Algebra, 41(6) (2013), 2026-2032.
  • P. Jothilingam, Cohen's theorem and Eakin-Nagata theorem revisited, Comm. Algebra, 28(10) (2000), 4861-4866.
  • J. W. Lim, A note on $S$-Noetherian domains, Kyungpook Math. J., 55(3) (2015), 507-514.
  • J. W. Lim and D. Y. Oh, $S$-Noetherian properties on amalgamated algebra along an ideal, J. Pure Appl. Algebra, 218(6) (2014), 1075-1080.
  • Z. Liu, On $S$-Noetherian rings, Arch. Math. (Brno), 43(1) (2007), 55-60.
  • E. S. Sevim, U. Tekir and S. Koc, $S$-artinian rings and finitely $S$-cogenerated rings, J. Algebra Appl., 19(3) (2020), 2050051 (16 pp).
  • B. Stenström, Rings of Quotients, Springer-Verlag, Berlin, 1975.
Year 2023, , 1 - 20, 10.07.2023
https://doi.org/10.24330/ieja.1300716

Abstract

References

  • H. Ahmed, $S$-Noetherian spectrum condition, Comm. Algebra, 46(8) (2018), 3314-3321.
  • D. D. Anderson and T. Dumitrescu, $S$-Noetherian rings, Comm. Algebra, 30(9) (2002), 4407-4416.
  • T.~Dumitrescu, Generic fiber of power series ring extensions, Comm. Algebra, 37(3) (2009), 1098-1103.
  • M. Eljeri, $S$-strongly finite type rings, Asian Research J. Math., 9(4) (2018), 1-9.
  • J. S. Golan, Torsion Theories, Pitman Monographs and Surveys in Pure and Applied Math., 29, Pitman, 1986.
  • E. Hamann, E. Houston and J. L. Johnson, Properties of uppers to zero in $R[X]$, Pacific J. Math., 135(1) (1988), 65-79.
  • P. Jara, An extension of $S$-artinian rings and modules to a hereditary torsion theory setting, Comm. Algebra, 49(4) (2021), 1583-1599.
  • A. V. Jategaonkar, Endomorphism rings of torsionless modules, Trans. Amer. Math. Soc., 161 (1971), 457-466.
  • C. Jayaram, K. H. Oral and U. Tekir, Strongly 0-dimensional rings, Comm. Algebra, 41(6) (2013), 2026-2032.
  • P. Jothilingam, Cohen's theorem and Eakin-Nagata theorem revisited, Comm. Algebra, 28(10) (2000), 4861-4866.
  • J. W. Lim, A note on $S$-Noetherian domains, Kyungpook Math. J., 55(3) (2015), 507-514.
  • J. W. Lim and D. Y. Oh, $S$-Noetherian properties on amalgamated algebra along an ideal, J. Pure Appl. Algebra, 218(6) (2014), 1075-1080.
  • Z. Liu, On $S$-Noetherian rings, Arch. Math. (Brno), 43(1) (2007), 55-60.
  • E. S. Sevim, U. Tekir and S. Koc, $S$-artinian rings and finitely $S$-cogenerated rings, J. Algebra Appl., 19(3) (2020), 2050051 (16 pp).
  • B. Stenström, Rings of Quotients, Springer-Verlag, Berlin, 1975.
There are 15 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Pascual Jara This is me

Early Pub Date May 24, 2023
Publication Date July 10, 2023
Published in Issue Year 2023

Cite

APA Jara, P. (2023). An extension of $S$--noetherian rings and modules. International Electronic Journal of Algebra, 34(34), 1-20. https://doi.org/10.24330/ieja.1300716
AMA Jara P. An extension of $S$--noetherian rings and modules. IEJA. July 2023;34(34):1-20. doi:10.24330/ieja.1300716
Chicago Jara, Pascual. “An Extension of $S$--Noetherian Rings and Modules”. International Electronic Journal of Algebra 34, no. 34 (July 2023): 1-20. https://doi.org/10.24330/ieja.1300716.
EndNote Jara P (July 1, 2023) An extension of $S$--noetherian rings and modules. International Electronic Journal of Algebra 34 34 1–20.
IEEE P. Jara, “An extension of $S$--noetherian rings and modules”, IEJA, vol. 34, no. 34, pp. 1–20, 2023, doi: 10.24330/ieja.1300716.
ISNAD Jara, Pascual. “An Extension of $S$--Noetherian Rings and Modules”. International Electronic Journal of Algebra 34/34 (July 2023), 1-20. https://doi.org/10.24330/ieja.1300716.
JAMA Jara P. An extension of $S$--noetherian rings and modules. IEJA. 2023;34:1–20.
MLA Jara, Pascual. “An Extension of $S$--Noetherian Rings and Modules”. International Electronic Journal of Algebra, vol. 34, no. 34, 2023, pp. 1-20, doi:10.24330/ieja.1300716.
Vancouver Jara P. An extension of $S$--noetherian rings and modules. IEJA. 2023;34(34):1-20.

Cited By

Totally simple modules
Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry
https://doi.org/10.1007/s13366-024-00759-6