Research Article
BibTex RIS Cite

Lie structure of the Heisenberg-Weyl algebra

Year 2024, , 32 - 60, 09.01.2024
https://doi.org/10.24330/ieja.1326849

Abstract

As an associative algebra, the Heisenberg--Weyl algebra $\HWeyl$ is generated by two elements $A$, $B$ subject to the relation $AB-BA=1$. As a Lie algebra, however, where the usual commutator serves as Lie bracket, the elements $A$ and $B$ are not able to generate the whole space $\HWeyl$. We identify a non-nilpotent but solvable Lie subalgebra $\coreLie$ of $\HWeyl$, for which, using some facts from the theory of bases for free Lie algebras, we give a presentation by generators and relations. Under this presentation, we show that, for some algebra isomorphism $\isoH:\HWeyl\into\HWeyl$, the Lie algebra $\HWeyl$ is generated by the generators of $\coreLie$, together with their images under $\isoH$, and that $\HWeyl$ is the sum of $\coreLie$, $\isoH(\coreLie)$ and $\lbrak \coreLie,\isoH(\coreLie)\rbrak$.

References

  • M. Arik and D. D. Coon, Hilbert spaces of analytic functions and generalized coherent states, J. Mathematical Phys., 17(4) (1976), 524-527.
  • G. M. Bergman, The diamond lemma for ring theory, Adv. in Math., 29(2) (1978), 178-218.
  • P. Blasiak, G. H. E. Duchamp, A. Horzela, K. A. Penson and A. I. Solomon, Heisenberg-Weyl algebra revisited: combinatorics of words and paths, J. Phys. A 41, 41 (2008), 415204 (8 pp).
  • L. A. Bokut and Y. Chen, Gröbner-Shirshov bases for Lie algebras: after A. I. Shirshov, Southeast Asian Bull. Math., 31(6) (2007), 1057-1076.
  • R. Cantuba, Lie polynomials in $q$-deformed Heisenberg algebras, J. Algebra, 522 (2019), 101-123.
  • R. Cantuba, Compactness property of Lie polynomials in the creation and annihilation operators of the $q$-oscillator, Lett. Math. Phys., 110(10) (2020), 2639-2657.
  • R. Cantuba and S. Silvestrov, Torsion-type q-deformed Heisenberg algebra and its Lie polynomials, In: S. Silvestrov, A. Malyarenko, M. Rancic (eds), Algebraic Structures and Applications, SPAS 2017, Springer Proc. Math. Stat., 317 (2020), Springer, Cham., 575-592.
  • R. Cantuba and S. Silvestrov, Lie polynomial characterization problems, In: S. Silvestrov, A. Malyarenko, M. Rancic (eds), Algebraic Structures and Applications, SPAS 2017, Springer Proc. Math. Stat., 317 (2020), Springer, Cham., 593-601.
  • R. Cantuba and M. A. C. Merciales, An extension of a $q$-deformed Heisenberg algebra and its Lie polynomials, Expo. Math., 39(1) (2021), 1-24.
  • K. T. Chen, R. H. Fox and R. C. Lyndon, Free differential calculus. IV: The quotient groups of the lower central series, Ann. of Math., 68(2) (1958), 81-95.
  • T. Ernst, A Comprehensive Treatment of $q$-Calculus, Birkhauser, Basel, 2012.
  • L. Hellström and S. Silvestrov, Commuting Elements in $q$-Deformed Heisenberg Algebras, World Scientific Publishing Co., Inc., River Edge, NJ, 2000.
  • L. Hellström, The Diamond Lemma for Power Series Algebras, Ph.D. thesis, Umea University, Sweden, 2002.
  • L. Hellström and S. Silvestrov, Two-sided ideals in $q$-deformed Heisenberg algebras, Expo. Math., 23(2) (2005), 99-125.
  • A. Kostrikin and I. R. Shafarevich, {Algebra VI: Combinatorial and Asymptotic Methods of Algebra. Non-associative Structures}, In: A. Kostrikin, I. R. Shafarevich (eds), Combinatorial and asymptotic methods in algebra, Encycl. Math. Sci., 57, Springer, Berlin Heidelberg, 1995.
  • E. Kreyszig, Introductory Functional Analysis with Applications, Wiley Classics Library, John Wiley \& Sons, Inc., New York, 1989.
  • M. Lothaire, Combinatorics on Words, Cambridge University Press, Cambridge, 1997.
  • M. R. Monteiro, L. M. C. S. Rodrigues and S. Wulck, Quantum algebraic nature of the phonon spectrum in $^4$He, Phys. Rev. Lett., 76(7) (1996), 1098-1101.
  • I. Z. Monteiro Alves and V. Petrogradsky, Lie structure of truncated symmetric Poisson algebras, J. Algebra, 488 (2017), 244-281.
  • C. Reutenauer, Free Lie Algebras, The Clarendon Press, Oxford University Press, New York, 1993.
  • D. M. Riley and A. Shalev, The Lie structure of enveloping algebras, J. Algebra, 162(1) (1993), 46-61.
  • D. Shalitin and Y. Tikochinsky, Transformation between the normal and antinormal expansions of boson operators, J. Math. Phys., 20(8) (1979), 1676-1678.
  • A. I. Shirshov, On the bases of a free Lie algebra, In: L. A. Bokut, I. Shestakov, V. Latyshe, E. Zelmanov (eds), Selected works of A.I. Shirshov, Contemporary Mathematicians, Birkhäuser, Basel, (2009), 113-118.
  • A. I. Shirshov, Some algorithmic problem for Lie algebras, In: L. A. Bokut, I. Shestakov, V. Latyshev, E. Zelmanov (eds), Selected works of A.I. Shirshov, Contemporary Mathematicians, Birkhäuser, Basel, (2009), 125-130.
  • S. Siciliano and H. Usefi, Lie structure of smash products, Israel J. Math., 217(1) (2017), 93-110.
Year 2024, , 32 - 60, 09.01.2024
https://doi.org/10.24330/ieja.1326849

Abstract

References

  • M. Arik and D. D. Coon, Hilbert spaces of analytic functions and generalized coherent states, J. Mathematical Phys., 17(4) (1976), 524-527.
  • G. M. Bergman, The diamond lemma for ring theory, Adv. in Math., 29(2) (1978), 178-218.
  • P. Blasiak, G. H. E. Duchamp, A. Horzela, K. A. Penson and A. I. Solomon, Heisenberg-Weyl algebra revisited: combinatorics of words and paths, J. Phys. A 41, 41 (2008), 415204 (8 pp).
  • L. A. Bokut and Y. Chen, Gröbner-Shirshov bases for Lie algebras: after A. I. Shirshov, Southeast Asian Bull. Math., 31(6) (2007), 1057-1076.
  • R. Cantuba, Lie polynomials in $q$-deformed Heisenberg algebras, J. Algebra, 522 (2019), 101-123.
  • R. Cantuba, Compactness property of Lie polynomials in the creation and annihilation operators of the $q$-oscillator, Lett. Math. Phys., 110(10) (2020), 2639-2657.
  • R. Cantuba and S. Silvestrov, Torsion-type q-deformed Heisenberg algebra and its Lie polynomials, In: S. Silvestrov, A. Malyarenko, M. Rancic (eds), Algebraic Structures and Applications, SPAS 2017, Springer Proc. Math. Stat., 317 (2020), Springer, Cham., 575-592.
  • R. Cantuba and S. Silvestrov, Lie polynomial characterization problems, In: S. Silvestrov, A. Malyarenko, M. Rancic (eds), Algebraic Structures and Applications, SPAS 2017, Springer Proc. Math. Stat., 317 (2020), Springer, Cham., 593-601.
  • R. Cantuba and M. A. C. Merciales, An extension of a $q$-deformed Heisenberg algebra and its Lie polynomials, Expo. Math., 39(1) (2021), 1-24.
  • K. T. Chen, R. H. Fox and R. C. Lyndon, Free differential calculus. IV: The quotient groups of the lower central series, Ann. of Math., 68(2) (1958), 81-95.
  • T. Ernst, A Comprehensive Treatment of $q$-Calculus, Birkhauser, Basel, 2012.
  • L. Hellström and S. Silvestrov, Commuting Elements in $q$-Deformed Heisenberg Algebras, World Scientific Publishing Co., Inc., River Edge, NJ, 2000.
  • L. Hellström, The Diamond Lemma for Power Series Algebras, Ph.D. thesis, Umea University, Sweden, 2002.
  • L. Hellström and S. Silvestrov, Two-sided ideals in $q$-deformed Heisenberg algebras, Expo. Math., 23(2) (2005), 99-125.
  • A. Kostrikin and I. R. Shafarevich, {Algebra VI: Combinatorial and Asymptotic Methods of Algebra. Non-associative Structures}, In: A. Kostrikin, I. R. Shafarevich (eds), Combinatorial and asymptotic methods in algebra, Encycl. Math. Sci., 57, Springer, Berlin Heidelberg, 1995.
  • E. Kreyszig, Introductory Functional Analysis with Applications, Wiley Classics Library, John Wiley \& Sons, Inc., New York, 1989.
  • M. Lothaire, Combinatorics on Words, Cambridge University Press, Cambridge, 1997.
  • M. R. Monteiro, L. M. C. S. Rodrigues and S. Wulck, Quantum algebraic nature of the phonon spectrum in $^4$He, Phys. Rev. Lett., 76(7) (1996), 1098-1101.
  • I. Z. Monteiro Alves and V. Petrogradsky, Lie structure of truncated symmetric Poisson algebras, J. Algebra, 488 (2017), 244-281.
  • C. Reutenauer, Free Lie Algebras, The Clarendon Press, Oxford University Press, New York, 1993.
  • D. M. Riley and A. Shalev, The Lie structure of enveloping algebras, J. Algebra, 162(1) (1993), 46-61.
  • D. Shalitin and Y. Tikochinsky, Transformation between the normal and antinormal expansions of boson operators, J. Math. Phys., 20(8) (1979), 1676-1678.
  • A. I. Shirshov, On the bases of a free Lie algebra, In: L. A. Bokut, I. Shestakov, V. Latyshe, E. Zelmanov (eds), Selected works of A.I. Shirshov, Contemporary Mathematicians, Birkhäuser, Basel, (2009), 113-118.
  • A. I. Shirshov, Some algorithmic problem for Lie algebras, In: L. A. Bokut, I. Shestakov, V. Latyshev, E. Zelmanov (eds), Selected works of A.I. Shirshov, Contemporary Mathematicians, Birkhäuser, Basel, (2009), 125-130.
  • S. Siciliano and H. Usefi, Lie structure of smash products, Israel J. Math., 217(1) (2017), 93-110.
There are 25 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory, Group Theory and Generalisations, Category Theory, K Theory, Homological Algebra, Lie Groups, Harmonic and Fourier Analysis, Pure Mathematics (Other)
Journal Section Articles
Authors

Rafael Reno S. Cantuba This is me

Early Pub Date July 14, 2023
Publication Date January 9, 2024
Published in Issue Year 2024

Cite

APA Cantuba, R. R. S. (2024). Lie structure of the Heisenberg-Weyl algebra. International Electronic Journal of Algebra, 35(35), 32-60. https://doi.org/10.24330/ieja.1326849
AMA Cantuba RRS. Lie structure of the Heisenberg-Weyl algebra. IEJA. January 2024;35(35):32-60. doi:10.24330/ieja.1326849
Chicago Cantuba, Rafael Reno S. “Lie Structure of the Heisenberg-Weyl Algebra”. International Electronic Journal of Algebra 35, no. 35 (January 2024): 32-60. https://doi.org/10.24330/ieja.1326849.
EndNote Cantuba RRS (January 1, 2024) Lie structure of the Heisenberg-Weyl algebra. International Electronic Journal of Algebra 35 35 32–60.
IEEE R. R. S. Cantuba, “Lie structure of the Heisenberg-Weyl algebra”, IEJA, vol. 35, no. 35, pp. 32–60, 2024, doi: 10.24330/ieja.1326849.
ISNAD Cantuba, Rafael Reno S. “Lie Structure of the Heisenberg-Weyl Algebra”. International Electronic Journal of Algebra 35/35 (January 2024), 32-60. https://doi.org/10.24330/ieja.1326849.
JAMA Cantuba RRS. Lie structure of the Heisenberg-Weyl algebra. IEJA. 2024;35:32–60.
MLA Cantuba, Rafael Reno S. “Lie Structure of the Heisenberg-Weyl Algebra”. International Electronic Journal of Algebra, vol. 35, no. 35, 2024, pp. 32-60, doi:10.24330/ieja.1326849.
Vancouver Cantuba RRS. Lie structure of the Heisenberg-Weyl algebra. IEJA. 2024;35(35):32-60.