Research Article
BibTex RIS Cite
Year 2024, , 108 - 120, 09.01.2024
https://doi.org/10.24330/ieja.1357059

Abstract

References

  • H. H. Andersen and V. Mazorchuk, Category $\O$ for quantum groups, J. Eur. Math. Soc. (JEMS), 17(2) (2015), 405-431.
  • J. E. Humphreys, Representations of semisimple Lie algebras in the BGG category $\O$, Grad. Stud. Math., American Math. Soc., 94, 2008.
  • R. Kane, Reflection Groups and Invariant Theory, CMS Books Math./Ouvrages Math. SMC, 5, Springer-Verlag, New York, 2001.
  • C. Voigt and R. Yuncken, Complex semisimple quantum groups and representation theory, Lecture Notes in Math., 2264, Springer, Cham, 2020.
  • Z. Wei, Tensor-closed objects in the BGG category of a quantized semisimple Lie algebra, Int. Electron. J. Algebra, 29 (2021), 175-186.

Tensor products of infinite dimensional modules in the BGG category of a quantized simple Lie algebra of type ADE

Year 2024, , 108 - 120, 09.01.2024
https://doi.org/10.24330/ieja.1357059

Abstract

We consider the BGG category $\O$ of a quantized universal enveloping algebra $U_q(\mathfrak{g})$. It is well-known that $M\otimes N\in \O$ if $M$ or $N$ is finite dimensional. When $\mathfrak{g}$ is simple and of type ADE, we prove in this paper that $M\otimes N\notin \O$ if $M$ and $N$ are both infinite dimensional.

References

  • H. H. Andersen and V. Mazorchuk, Category $\O$ for quantum groups, J. Eur. Math. Soc. (JEMS), 17(2) (2015), 405-431.
  • J. E. Humphreys, Representations of semisimple Lie algebras in the BGG category $\O$, Grad. Stud. Math., American Math. Soc., 94, 2008.
  • R. Kane, Reflection Groups and Invariant Theory, CMS Books Math./Ouvrages Math. SMC, 5, Springer-Verlag, New York, 2001.
  • C. Voigt and R. Yuncken, Complex semisimple quantum groups and representation theory, Lecture Notes in Math., 2264, Springer, Cham, 2020.
  • Z. Wei, Tensor-closed objects in the BGG category of a quantized semisimple Lie algebra, Int. Electron. J. Algebra, 29 (2021), 175-186.
There are 5 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory, Group Theory and Generalisations, Category Theory, K Theory, Homological Algebra, Pure Mathematics (Other)
Journal Section Articles
Authors

Zhaoting Wei This is me

Early Pub Date September 8, 2023
Publication Date January 9, 2024
Published in Issue Year 2024

Cite

APA Wei, Z. (2024). Tensor products of infinite dimensional modules in the BGG category of a quantized simple Lie algebra of type ADE. International Electronic Journal of Algebra, 35(35), 108-120. https://doi.org/10.24330/ieja.1357059
AMA Wei Z. Tensor products of infinite dimensional modules in the BGG category of a quantized simple Lie algebra of type ADE. IEJA. January 2024;35(35):108-120. doi:10.24330/ieja.1357059
Chicago Wei, Zhaoting. “Tensor Products of Infinite Dimensional Modules in the BGG Category of a Quantized Simple Lie Algebra of Type ADE”. International Electronic Journal of Algebra 35, no. 35 (January 2024): 108-20. https://doi.org/10.24330/ieja.1357059.
EndNote Wei Z (January 1, 2024) Tensor products of infinite dimensional modules in the BGG category of a quantized simple Lie algebra of type ADE. International Electronic Journal of Algebra 35 35 108–120.
IEEE Z. Wei, “Tensor products of infinite dimensional modules in the BGG category of a quantized simple Lie algebra of type ADE”, IEJA, vol. 35, no. 35, pp. 108–120, 2024, doi: 10.24330/ieja.1357059.
ISNAD Wei, Zhaoting. “Tensor Products of Infinite Dimensional Modules in the BGG Category of a Quantized Simple Lie Algebra of Type ADE”. International Electronic Journal of Algebra 35/35 (January 2024), 108-120. https://doi.org/10.24330/ieja.1357059.
JAMA Wei Z. Tensor products of infinite dimensional modules in the BGG category of a quantized simple Lie algebra of type ADE. IEJA. 2024;35:108–120.
MLA Wei, Zhaoting. “Tensor Products of Infinite Dimensional Modules in the BGG Category of a Quantized Simple Lie Algebra of Type ADE”. International Electronic Journal of Algebra, vol. 35, no. 35, 2024, pp. 108-20, doi:10.24330/ieja.1357059.
Vancouver Wei Z. Tensor products of infinite dimensional modules in the BGG category of a quantized simple Lie algebra of type ADE. IEJA. 2024;35(35):108-20.