Research Article
BibTex RIS Cite
Year 2024, , 95 - 107, 09.01.2024
https://doi.org/10.24330/ieja.1377714

Abstract

References

  • M. F. Atiyah, K - Theory, W. A. Benjamin, Inc., New York- Amsterdam, 1967.
  • C. Chevalley, A new kind of relationship between matrices, Amer. J. Math., 65 (1943), 521-531.
  • C. Chevalley, Algebraic Lie algebras, Ann. of Math. (2), 48 (1947), 91-100.
  • C. Chevalley, Theorie des Groupes de Lie, Tome II, Groupes Algebriques, No. 1152. Hermann & Cie, Paris, 1951.
  • M. Goto, On algebraic Lie algebras, J. Math. Soc. Japan, 1 (1948), 29-45.
  • G. Hochschild, Semi-simple algebras and generalized derivations, Amer. J. Math., 64 (1942), 677-694.
  • B. S. Kiranagi, R. Kumar, K. Ajaykumar and B. Madhu, On derivation algebra bundle of an algebra bundle, Proc. Jangjeon Math. Soc., 21(2) (2018), 293-300.
  • Y. Matsushima, Note on the replicas of matrices, Proc. Japan Acad., 23(5) (1947), 42-49.
  • S.Tôgô, On the derivation algebras of Lie algebras, Canadian J. Math., 13 (1961), 201-216.
  • S. Tôgô, On splittable linear Lie algebras, J. Sci. Hiroshima Univ. Ser. A, 18 (1955), 289-306.
  • S. Tôgô, Derivations of Lie algebras, J. Sci. Hiroshima Univ. Ser. A-I Math., 28 (1964), 133-158.

Algebraic Lie Algebra Bundles and Derivations of Lie Algebra Bundles

Year 2024, , 95 - 107, 09.01.2024
https://doi.org/10.24330/ieja.1377714

Abstract

In this paper, we define algebraic Lie algebra bundles, discuss some results on algebraic Lie algebra bundles and derivations of Lie algebra bundles. Some results involving inner derivations and central derivations of Lie algebra bundles are obtained.

References

  • M. F. Atiyah, K - Theory, W. A. Benjamin, Inc., New York- Amsterdam, 1967.
  • C. Chevalley, A new kind of relationship between matrices, Amer. J. Math., 65 (1943), 521-531.
  • C. Chevalley, Algebraic Lie algebras, Ann. of Math. (2), 48 (1947), 91-100.
  • C. Chevalley, Theorie des Groupes de Lie, Tome II, Groupes Algebriques, No. 1152. Hermann & Cie, Paris, 1951.
  • M. Goto, On algebraic Lie algebras, J. Math. Soc. Japan, 1 (1948), 29-45.
  • G. Hochschild, Semi-simple algebras and generalized derivations, Amer. J. Math., 64 (1942), 677-694.
  • B. S. Kiranagi, R. Kumar, K. Ajaykumar and B. Madhu, On derivation algebra bundle of an algebra bundle, Proc. Jangjeon Math. Soc., 21(2) (2018), 293-300.
  • Y. Matsushima, Note on the replicas of matrices, Proc. Japan Acad., 23(5) (1947), 42-49.
  • S.Tôgô, On the derivation algebras of Lie algebras, Canadian J. Math., 13 (1961), 201-216.
  • S. Tôgô, On splittable linear Lie algebras, J. Sci. Hiroshima Univ. Ser. A, 18 (1955), 289-306.
  • S. Tôgô, Derivations of Lie algebras, J. Sci. Hiroshima Univ. Ser. A-I Math., 28 (1964), 133-158.
There are 11 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory, Category Theory, K Theory, Homological Algebra
Journal Section Articles
Authors

M. V. Monica This is me

R Rajendra

Early Pub Date October 18, 2023
Publication Date January 9, 2024
Published in Issue Year 2024

Cite

APA Monica, M. V., & Rajendra, R. (2024). Algebraic Lie Algebra Bundles and Derivations of Lie Algebra Bundles. International Electronic Journal of Algebra, 35(35), 95-107. https://doi.org/10.24330/ieja.1377714
AMA Monica MV, Rajendra R. Algebraic Lie Algebra Bundles and Derivations of Lie Algebra Bundles. IEJA. January 2024;35(35):95-107. doi:10.24330/ieja.1377714
Chicago Monica, M. V., and R Rajendra. “Algebraic Lie Algebra Bundles and Derivations of Lie Algebra Bundles”. International Electronic Journal of Algebra 35, no. 35 (January 2024): 95-107. https://doi.org/10.24330/ieja.1377714.
EndNote Monica MV, Rajendra R (January 1, 2024) Algebraic Lie Algebra Bundles and Derivations of Lie Algebra Bundles. International Electronic Journal of Algebra 35 35 95–107.
IEEE M. V. Monica and R. Rajendra, “Algebraic Lie Algebra Bundles and Derivations of Lie Algebra Bundles”, IEJA, vol. 35, no. 35, pp. 95–107, 2024, doi: 10.24330/ieja.1377714.
ISNAD Monica, M. V. - Rajendra, R. “Algebraic Lie Algebra Bundles and Derivations of Lie Algebra Bundles”. International Electronic Journal of Algebra 35/35 (January 2024), 95-107. https://doi.org/10.24330/ieja.1377714.
JAMA Monica MV, Rajendra R. Algebraic Lie Algebra Bundles and Derivations of Lie Algebra Bundles. IEJA. 2024;35:95–107.
MLA Monica, M. V. and R Rajendra. “Algebraic Lie Algebra Bundles and Derivations of Lie Algebra Bundles”. International Electronic Journal of Algebra, vol. 35, no. 35, 2024, pp. 95-107, doi:10.24330/ieja.1377714.
Vancouver Monica MV, Rajendra R. Algebraic Lie Algebra Bundles and Derivations of Lie Algebra Bundles. IEJA. 2024;35(35):95-107.