Research Article
BibTex RIS Cite
Year 2024, , 139 - 148, 09.01.2024
https://doi.org/10.24330/ieja.1402798

Abstract

References

  • J. Ahsan, Seminear-rings characterized by their $\mathcal{S}$-ideals, I, Proc. Japan Acad. Ser. A Math. Sci., 71(5) (1995), 101-103.
  • J. Ahsan, Seminear-rings characterized by their $\mathcal{S}$-ideals, II, Proc. Japan Acad. Ser. A Math. Sci., 71(6) (1995), 111-113.
  • R. Balakrishnan and R. Perumal, Left duo seminear-rings, Scientia Magna, 8(3) (2012), 115-120.
  • R. Balakrishnan and S. Suryanarayanan, $P(r,m)$ near-rings, Bull. Malays. Math. Sci. Soc., 23(2) (2000), 117-130.
  • R. Balakrishnan and S. Suryanarayanan, On $P_k$ and $P_k'$ near-rings, Bull. Malays. Math. Sci. Soc., 23(1) (2000), 9-24.
  • T. Boykett, Seminearring models of reversible computation, Univ., Institut fur Mathematik, 1997, 19 pp.
  • G. Gratzer, Universal Algebra, Springer, New York, 2008.
  • H. Hoogewijs, Semi-nearring embeddings, Med. Konink. Vlaamse Acad. Wetensch. Lett. Schone Kunst, Belgie Kl. Wetensch,32(2) (1970), 11 pp.
  • W. G. van Hoorn and B. van Rootselaar, Fundamental notions in the theory of seminearrings, Compositio Math., 18 (1967), 65-78.
  • F. Hussain, M. Tahir, S. Abdullah and N. Sadiq, Quotient seminear-rings, Indian Journal of Science and Technology, 9(38) (2016), 1-7.
  • S. A. Huq, Embedding problems, module theory and semisimplicity of seminearrings, Ann. Soc. Sci. Bruxelles Sér. I., 103(1) (1989), 49-62.
  • G. Manikandan and R. Perumal, Mate and mutual mate functions in a seminearring, AIMS Math., 5(5) (2020), 4974-4982.
  • G. Manikandan and R. Perumal, Mid-units in duo seminearrings, J. Phys. Conf. Ser., 1850 (2021), 012037 (5 pp).
  • G. Manikandan and R. Perumal, A note on left duo seminearrings, Palest. J. Math., 11(Special Issue I) (2022), 24-28.
  • G. Manikandan, R. Perumal and R. Arulprakasam, Strong K(r,s) seminear-rings, AIP Conf. Proc., 2112(1) (2019), 020116 (5 pp).
  • R. Perumal and R. Balakrishnan, Ideals in $P_k$ and $P_k'$ seminear-rings, Malaya J. Mat., S(1) (2013), 66-70.
  • G. Pilz, Near-Rings: The Theory and its Applications, Mathematics Studies, 23, North-Holland Publishing Co., Amsterdam, 1977.
  • B. van Rootselaar, Algebraische kennzeichnung freier wortarithmetiken, Compositio Math., 15 (1963), 156-168.
  • M. Shabir and I. Ahmed, Weakly regular seminearrings, Int. Electron. J. Algebra, 2 (2007), 114-126.
  • H. J. Weinert, Seminearrings, seminearfields and their semigroup-theoretical background, Semigroup Forum, 24(2-3) (1982), 231-254.
  • H. J. Weinert, Partially and fully ordered seminearrings and nearrings, Near-Rings and Near-Fields, North-Holland Math. Stud., 137 (1987), 277-294.
  • H. J. Weinert, Extensions of seminearrings by semigroups of right quotients, Recent developments in the algebraic, analytical and topological theory of semigroups (Oberwolfach, 1981), 412–486, Lecture Notes in Math., Springer-Verlag, Berlin, 998 (1983).

The structure of certain unique classes of seminearrings

Year 2024, , 139 - 148, 09.01.2024
https://doi.org/10.24330/ieja.1402798

Abstract

In this paper, we introduce the classes of $\alpha$ and strictly-$\alpha$ seminearrings and establishes some of their properties, mostly in relation to the possession of a mate
function. Then we get the criterion for an $\alpha$-seminearring to become a strictly-$\alpha$ seminearring. We also obtain a complete characterisations of $\alpha$ and strictly-$\alpha$ seminearrings and proved certain results for $\alpha$ and strictly-$\alpha$ seminearrings via certain unique classes of seminearrings.

References

  • J. Ahsan, Seminear-rings characterized by their $\mathcal{S}$-ideals, I, Proc. Japan Acad. Ser. A Math. Sci., 71(5) (1995), 101-103.
  • J. Ahsan, Seminear-rings characterized by their $\mathcal{S}$-ideals, II, Proc. Japan Acad. Ser. A Math. Sci., 71(6) (1995), 111-113.
  • R. Balakrishnan and R. Perumal, Left duo seminear-rings, Scientia Magna, 8(3) (2012), 115-120.
  • R. Balakrishnan and S. Suryanarayanan, $P(r,m)$ near-rings, Bull. Malays. Math. Sci. Soc., 23(2) (2000), 117-130.
  • R. Balakrishnan and S. Suryanarayanan, On $P_k$ and $P_k'$ near-rings, Bull. Malays. Math. Sci. Soc., 23(1) (2000), 9-24.
  • T. Boykett, Seminearring models of reversible computation, Univ., Institut fur Mathematik, 1997, 19 pp.
  • G. Gratzer, Universal Algebra, Springer, New York, 2008.
  • H. Hoogewijs, Semi-nearring embeddings, Med. Konink. Vlaamse Acad. Wetensch. Lett. Schone Kunst, Belgie Kl. Wetensch,32(2) (1970), 11 pp.
  • W. G. van Hoorn and B. van Rootselaar, Fundamental notions in the theory of seminearrings, Compositio Math., 18 (1967), 65-78.
  • F. Hussain, M. Tahir, S. Abdullah and N. Sadiq, Quotient seminear-rings, Indian Journal of Science and Technology, 9(38) (2016), 1-7.
  • S. A. Huq, Embedding problems, module theory and semisimplicity of seminearrings, Ann. Soc. Sci. Bruxelles Sér. I., 103(1) (1989), 49-62.
  • G. Manikandan and R. Perumal, Mate and mutual mate functions in a seminearring, AIMS Math., 5(5) (2020), 4974-4982.
  • G. Manikandan and R. Perumal, Mid-units in duo seminearrings, J. Phys. Conf. Ser., 1850 (2021), 012037 (5 pp).
  • G. Manikandan and R. Perumal, A note on left duo seminearrings, Palest. J. Math., 11(Special Issue I) (2022), 24-28.
  • G. Manikandan, R. Perumal and R. Arulprakasam, Strong K(r,s) seminear-rings, AIP Conf. Proc., 2112(1) (2019), 020116 (5 pp).
  • R. Perumal and R. Balakrishnan, Ideals in $P_k$ and $P_k'$ seminear-rings, Malaya J. Mat., S(1) (2013), 66-70.
  • G. Pilz, Near-Rings: The Theory and its Applications, Mathematics Studies, 23, North-Holland Publishing Co., Amsterdam, 1977.
  • B. van Rootselaar, Algebraische kennzeichnung freier wortarithmetiken, Compositio Math., 15 (1963), 156-168.
  • M. Shabir and I. Ahmed, Weakly regular seminearrings, Int. Electron. J. Algebra, 2 (2007), 114-126.
  • H. J. Weinert, Seminearrings, seminearfields and their semigroup-theoretical background, Semigroup Forum, 24(2-3) (1982), 231-254.
  • H. J. Weinert, Partially and fully ordered seminearrings and nearrings, Near-Rings and Near-Fields, North-Holland Math. Stud., 137 (1987), 277-294.
  • H. J. Weinert, Extensions of seminearrings by semigroups of right quotients, Recent developments in the algebraic, analytical and topological theory of semigroups (Oberwolfach, 1981), 412–486, Lecture Notes in Math., Springer-Verlag, Berlin, 998 (1983).
There are 22 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Articles
Authors

G. Manikandan This is me

Perumal Ramachandran

P. Madhusoodhanan This is me

Early Pub Date December 13, 2023
Publication Date January 9, 2024
Published in Issue Year 2024

Cite

APA Manikandan, G., Ramachandran, P., & Madhusoodhanan, P. (2024). The structure of certain unique classes of seminearrings. International Electronic Journal of Algebra, 35(35), 139-148. https://doi.org/10.24330/ieja.1402798
AMA Manikandan G, Ramachandran P, Madhusoodhanan P. The structure of certain unique classes of seminearrings. IEJA. January 2024;35(35):139-148. doi:10.24330/ieja.1402798
Chicago Manikandan, G., Perumal Ramachandran, and P. Madhusoodhanan. “The Structure of Certain Unique Classes of Seminearrings”. International Electronic Journal of Algebra 35, no. 35 (January 2024): 139-48. https://doi.org/10.24330/ieja.1402798.
EndNote Manikandan G, Ramachandran P, Madhusoodhanan P (January 1, 2024) The structure of certain unique classes of seminearrings. International Electronic Journal of Algebra 35 35 139–148.
IEEE G. Manikandan, P. Ramachandran, and P. Madhusoodhanan, “The structure of certain unique classes of seminearrings”, IEJA, vol. 35, no. 35, pp. 139–148, 2024, doi: 10.24330/ieja.1402798.
ISNAD Manikandan, G. et al. “The Structure of Certain Unique Classes of Seminearrings”. International Electronic Journal of Algebra 35/35 (January 2024), 139-148. https://doi.org/10.24330/ieja.1402798.
JAMA Manikandan G, Ramachandran P, Madhusoodhanan P. The structure of certain unique classes of seminearrings. IEJA. 2024;35:139–148.
MLA Manikandan, G. et al. “The Structure of Certain Unique Classes of Seminearrings”. International Electronic Journal of Algebra, vol. 35, no. 35, 2024, pp. 139-48, doi:10.24330/ieja.1402798.
Vancouver Manikandan G, Ramachandran P, Madhusoodhanan P. The structure of certain unique classes of seminearrings. IEJA. 2024;35(35):139-48.