Research Article
BibTex RIS Cite
Year 2024, , 160 - 167, 09.01.2024
https://doi.org/10.24330/ieja.1402947

Abstract

References

  • K. K. S. Andersen, B. Oliver and J. Ventura, Reduced, tame and exotic fusion systems, Proc. Lond. Math. Soc. (3), 105(1) (2012), 87-152.
  • R. Boltje, R. Kessar and M. Linckelmann, On Picard groups of blocks of finite groups, J. Algebra, 558 (2020), 70-101.
  • H. Ishioka and N. Kunugi, Brauer indecomposability of Scott modules, J. Algebra, 470 (2017), 441-449.
  • S. Koshitani and C. Lassueur, Splendid Morita equivalences for principal $2$-blocks with dihedral defect groups, Math. Z., 294(1-2) (2020), 639-666.
  • S. Koshitani and C. Lassueur, Splendid Morita equivalences for principal blocks with generalised quaternion defect groups, J. Algebra, 558 (2020), 523-533.
  • L. Puig, On the Local Structure of Morita and Rickard Equivalences Between Brauer Blocks, Progr. Math., 178, Birkhauser Verlag, Basel, vi+261 pp, 1999.
  • R. Rouquier, The derived category of blocks with cyclic defect groups, in: S. König, A.~Zimmermann (Eds.), Derived equivalences for group rings, in: Lecture Notes in Math., 1685 (1998), Springer-Verlag, Berlin, 199-220.

The group of splendid Morita equivalences of principal 2-blocks with dihedral and generalised quaternion defect groups

Year 2024, , 160 - 167, 09.01.2024
https://doi.org/10.24330/ieja.1402947

Abstract

Let $k$ be an algebraically closed field of characteristic $2$, let $G$ be a finite group and let $B$ be the principal $2$-block of $kG$ with a dihedral or a generalised quaternion defect group $P$. Let also $\calT(B)$ denote the group of splendid Morita auto-equivalences of $B$. We show that
\begin{align*}
\calT(B)\cong \Out_P(A)\rtimes \Out(P,\calF),
\end{align*}
where $\Out(P,\calF)$ is the group of outer automorphisms of $P$ which stabilize the fusion system $\calF$ of $G$ on $P$ and $\Out_P(A)$ is the group of algebra automorphisms of a source algebra $A$ of $B$ fixing $P$ modulo inner automorphisms induced by $(A^P)^\times$.

References

  • K. K. S. Andersen, B. Oliver and J. Ventura, Reduced, tame and exotic fusion systems, Proc. Lond. Math. Soc. (3), 105(1) (2012), 87-152.
  • R. Boltje, R. Kessar and M. Linckelmann, On Picard groups of blocks of finite groups, J. Algebra, 558 (2020), 70-101.
  • H. Ishioka and N. Kunugi, Brauer indecomposability of Scott modules, J. Algebra, 470 (2017), 441-449.
  • S. Koshitani and C. Lassueur, Splendid Morita equivalences for principal $2$-blocks with dihedral defect groups, Math. Z., 294(1-2) (2020), 639-666.
  • S. Koshitani and C. Lassueur, Splendid Morita equivalences for principal blocks with generalised quaternion defect groups, J. Algebra, 558 (2020), 523-533.
  • L. Puig, On the Local Structure of Morita and Rickard Equivalences Between Brauer Blocks, Progr. Math., 178, Birkhauser Verlag, Basel, vi+261 pp, 1999.
  • R. Rouquier, The derived category of blocks with cyclic defect groups, in: S. König, A.~Zimmermann (Eds.), Derived equivalences for group rings, in: Lecture Notes in Math., 1685 (1998), Springer-Verlag, Berlin, 199-220.
There are 7 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Articles
Authors

Çisil Karagüzel This is me

Deniz Yılmaz This is me

Early Pub Date December 13, 2023
Publication Date January 9, 2024
Published in Issue Year 2024

Cite

APA Karagüzel, Ç., & Yılmaz, D. (2024). The group of splendid Morita equivalences of principal 2-blocks with dihedral and generalised quaternion defect groups. International Electronic Journal of Algebra, 35(35), 160-167. https://doi.org/10.24330/ieja.1402947
AMA Karagüzel Ç, Yılmaz D. The group of splendid Morita equivalences of principal 2-blocks with dihedral and generalised quaternion defect groups. IEJA. January 2024;35(35):160-167. doi:10.24330/ieja.1402947
Chicago Karagüzel, Çisil, and Deniz Yılmaz. “The Group of Splendid Morita Equivalences of Principal 2-Blocks With Dihedral and Generalised Quaternion Defect Groups”. International Electronic Journal of Algebra 35, no. 35 (January 2024): 160-67. https://doi.org/10.24330/ieja.1402947.
EndNote Karagüzel Ç, Yılmaz D (January 1, 2024) The group of splendid Morita equivalences of principal 2-blocks with dihedral and generalised quaternion defect groups. International Electronic Journal of Algebra 35 35 160–167.
IEEE Ç. Karagüzel and D. Yılmaz, “The group of splendid Morita equivalences of principal 2-blocks with dihedral and generalised quaternion defect groups”, IEJA, vol. 35, no. 35, pp. 160–167, 2024, doi: 10.24330/ieja.1402947.
ISNAD Karagüzel, Çisil - Yılmaz, Deniz. “The Group of Splendid Morita Equivalences of Principal 2-Blocks With Dihedral and Generalised Quaternion Defect Groups”. International Electronic Journal of Algebra 35/35 (January 2024), 160-167. https://doi.org/10.24330/ieja.1402947.
JAMA Karagüzel Ç, Yılmaz D. The group of splendid Morita equivalences of principal 2-blocks with dihedral and generalised quaternion defect groups. IEJA. 2024;35:160–167.
MLA Karagüzel, Çisil and Deniz Yılmaz. “The Group of Splendid Morita Equivalences of Principal 2-Blocks With Dihedral and Generalised Quaternion Defect Groups”. International Electronic Journal of Algebra, vol. 35, no. 35, 2024, pp. 160-7, doi:10.24330/ieja.1402947.
Vancouver Karagüzel Ç, Yılmaz D. The group of splendid Morita equivalences of principal 2-blocks with dihedral and generalised quaternion defect groups. IEJA. 2024;35(35):160-7.