Research Article
BibTex RIS Cite

Computational methods for t-spread monomial ideals

Year 2024, , 186 - 216, 09.01.2024
https://doi.org/10.24330/ieja.1402973

Abstract

Let $K$ be a field and $S=K[x_1,\ldots,x_n]$ a standard polynomial ring over $K$.
In this paper, we give new combinatorial algorithms to compute the smallest $t$-spread lexicographic set and the smallest $t$-spread strongly stable set containing a given set of $t$-spread monomials of $S$.
Some technical tools allowing to compute the cardinality of $t$-spread strongly stable sets avoiding their construction are also presented.
Such functions are also implemented in a \emph{Macaulay2} package, \texttt{TSpreadIdeals}, to ease the computation of well-known results about algebraic invariants for $t$-spread ideals.

References

  • L. Amata, Graded Algebras: Theoretical and Computational Aspects, Doctoral Thesis, University of Catania, 2020.
  • L. Amata and M. Crupi, Extremal Betti numbers of $t$-spread strongly stable ideals, Mathematics, {7}(8) (2019), 695 (16 pp).
  • L. Amata and M. Crupi, On the extremal Betti numbers of squarefree monomial ideals, Int. Electron. J. Algebra, {30} (2021), 168-202.
  • L. Amata, M. Crupi and A. Ficarra, Upper bounds for extremal Betti numbers of $t$-spread strongly stable ideals, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 65(113)(1) (2022), 13-34.
  • L. Amata, M. Crupi and A. Ficarra, Projective dimension and Castelnuovo-Mumford regularity of $t$-spread ideals, Internat. J. Algebra Comput., 32(4) (2022), 837-858.
  • L. Amata, A. Ficarra and M. Crupi, A numerical characterization of the extremal Betti numbers of $t$-spread strongly stable ideals, J. Algebraic Combin., 55(3) (2022), 891-918.
  • C. Andrei-Ciobanu, V. Ene and B. Lajmiri, Powers of $t$-spread principal Borel ideals, Arch. Math. (Basel), {112}(6) (2019), 587-597.
  • C. Andrei-Ciobanu, Kruskal-Katona Theorem for $t$-spread strongly stable ideals, Bull. Math. Soc. Sci. Math. Roumanie ({N.S.}), {62(110)(2)} (2019), 107-122.
  • A. Aramova, J. Herzog and T. Hibi, Squarefree lexsegment ideals, Math. Z., {228}(2) (1998), 353-378.
  • A. Aramova, J. Herzog and T. Hibi, Shifting operations and graded Betti numbers, J. Algebraic Combin., {12}(3) (2000), 207-222.
  • D. Bayer, H. Charalambous and S. Popescu, Extremal Betti numbers and applications to monomial ideals, J. Algebra, {221}(2) (1999), 497-512.
  • R. Dinu, J. Herzog and A. A. Qureshi, Restricted classes of veronese type ideals and algebras, Internat. J. Algebra Comput., {31}(1) (2021), 173-197.
  • D. Eisenbud, Commutative Algebra, Grad. Texts in Math., 150, Springer-Verlag, New York, 1995.
  • V. Ene, J. Herzog and A. A. Qureshi, $T$-spread strongly stable monomial ideals, Comm. Algebra, 47(12) (2019), 5303-5316.
  • D. R. Grayson and M. E. Stillman, Macaulay2, a software system for research in algebraic geometry, Available at http://www2.macaulay2.com.
  • J. Herzog and T. Hibi, Monomial Ideals, Grad. Texts in Math., 260, Springer-Verlag, London, 2011.
  • E. Miller and B. Sturmfels, Combinatorial Commutative Algebra, Grad. Texts in Math., 227, Springer-Verlag, New York, 2005.
Year 2024, , 186 - 216, 09.01.2024
https://doi.org/10.24330/ieja.1402973

Abstract

References

  • L. Amata, Graded Algebras: Theoretical and Computational Aspects, Doctoral Thesis, University of Catania, 2020.
  • L. Amata and M. Crupi, Extremal Betti numbers of $t$-spread strongly stable ideals, Mathematics, {7}(8) (2019), 695 (16 pp).
  • L. Amata and M. Crupi, On the extremal Betti numbers of squarefree monomial ideals, Int. Electron. J. Algebra, {30} (2021), 168-202.
  • L. Amata, M. Crupi and A. Ficarra, Upper bounds for extremal Betti numbers of $t$-spread strongly stable ideals, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 65(113)(1) (2022), 13-34.
  • L. Amata, M. Crupi and A. Ficarra, Projective dimension and Castelnuovo-Mumford regularity of $t$-spread ideals, Internat. J. Algebra Comput., 32(4) (2022), 837-858.
  • L. Amata, A. Ficarra and M. Crupi, A numerical characterization of the extremal Betti numbers of $t$-spread strongly stable ideals, J. Algebraic Combin., 55(3) (2022), 891-918.
  • C. Andrei-Ciobanu, V. Ene and B. Lajmiri, Powers of $t$-spread principal Borel ideals, Arch. Math. (Basel), {112}(6) (2019), 587-597.
  • C. Andrei-Ciobanu, Kruskal-Katona Theorem for $t$-spread strongly stable ideals, Bull. Math. Soc. Sci. Math. Roumanie ({N.S.}), {62(110)(2)} (2019), 107-122.
  • A. Aramova, J. Herzog and T. Hibi, Squarefree lexsegment ideals, Math. Z., {228}(2) (1998), 353-378.
  • A. Aramova, J. Herzog and T. Hibi, Shifting operations and graded Betti numbers, J. Algebraic Combin., {12}(3) (2000), 207-222.
  • D. Bayer, H. Charalambous and S. Popescu, Extremal Betti numbers and applications to monomial ideals, J. Algebra, {221}(2) (1999), 497-512.
  • R. Dinu, J. Herzog and A. A. Qureshi, Restricted classes of veronese type ideals and algebras, Internat. J. Algebra Comput., {31}(1) (2021), 173-197.
  • D. Eisenbud, Commutative Algebra, Grad. Texts in Math., 150, Springer-Verlag, New York, 1995.
  • V. Ene, J. Herzog and A. A. Qureshi, $T$-spread strongly stable monomial ideals, Comm. Algebra, 47(12) (2019), 5303-5316.
  • D. R. Grayson and M. E. Stillman, Macaulay2, a software system for research in algebraic geometry, Available at http://www2.macaulay2.com.
  • J. Herzog and T. Hibi, Monomial Ideals, Grad. Texts in Math., 260, Springer-Verlag, London, 2011.
  • E. Miller and B. Sturmfels, Combinatorial Commutative Algebra, Grad. Texts in Math., 227, Springer-Verlag, New York, 2005.
There are 17 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Articles
Authors

Luca Amata This is me

Early Pub Date December 13, 2023
Publication Date January 9, 2024
Published in Issue Year 2024

Cite

APA Amata, L. (2024). Computational methods for t-spread monomial ideals. International Electronic Journal of Algebra, 35(35), 186-216. https://doi.org/10.24330/ieja.1402973
AMA Amata L. Computational methods for t-spread monomial ideals. IEJA. January 2024;35(35):186-216. doi:10.24330/ieja.1402973
Chicago Amata, Luca. “Computational Methods for T-Spread Monomial Ideals”. International Electronic Journal of Algebra 35, no. 35 (January 2024): 186-216. https://doi.org/10.24330/ieja.1402973.
EndNote Amata L (January 1, 2024) Computational methods for t-spread monomial ideals. International Electronic Journal of Algebra 35 35 186–216.
IEEE L. Amata, “Computational methods for t-spread monomial ideals”, IEJA, vol. 35, no. 35, pp. 186–216, 2024, doi: 10.24330/ieja.1402973.
ISNAD Amata, Luca. “Computational Methods for T-Spread Monomial Ideals”. International Electronic Journal of Algebra 35/35 (January 2024), 186-216. https://doi.org/10.24330/ieja.1402973.
JAMA Amata L. Computational methods for t-spread monomial ideals. IEJA. 2024;35:186–216.
MLA Amata, Luca. “Computational Methods for T-Spread Monomial Ideals”. International Electronic Journal of Algebra, vol. 35, no. 35, 2024, pp. 186-1, doi:10.24330/ieja.1402973.
Vancouver Amata L. Computational methods for t-spread monomial ideals. IEJA. 2024;35(35):186-21.